
Concurrency Attacks

Junfeng Yang, Ang Cui, Sal Stolfo, Simha Sethumadhavan
{junfeng, ang, sal, simha}cs.columbia.edu

Department of Computer Science
Columbia University

Abstract

Just as errors in sequential programs can lead to se-
curity exploits, errors in concurrent programs can lead to
concurrency attacks. Questions such as whether these at-
tacks are real and what characteristics they have remain
largely unknown. In this paper, we present a preliminary
study of concurrency attacks and the security implica-
tions of real concurrency errors. Our study yields several
interesting findings. For instance, we observe that the
exploitability of a concurrency error depends on the du-
ration of the timing window within which the error may
occur. We further observe that attackers can increase this
window through carefully crafted inputs. We also find
that four out of five commonly used sequential defense
mechanisms become unsafe when applied to concurrent
programs. Based on our findings, we propose new de-
fense directions and fixes to existing defenses.

1 Introduction

Concurrent programs have become pervasive and critical
because of the move to multicore hardware and deploy-
ment of large-scale distributed systems. Yet these pro-
grams remain much more difficult to write, test, and de-
bug than sequential versions [23, 31]. This impediment
has led to numerous, subtle and serious errors in concur-
rent programs [25]. Just as errors in sequential programs
can lead to security exploits, concurrency errors may be
vulnerable and lead to concurrency attacks which allow
attackers to steal information, escalate privileges, inject
code, etc. To defend against these attacks, we need to
better understand concurrency errors and how they can or
have been exploited. Prior work [25] has studied proper-
ties of many concurrency errors, but it focused on general
concurrency errors, not the exploitable ones, which our
study reveals to have different properties.

In this paper, we present a study of concurrency at-
tacks and the security implications of concurrency errors.
We focus on four questions:

§ Do concurrency attacks occur in the wild? In the-
ory any bug—concurrent or sequential—may be ex-
ploited to compromise security but we want to know
if real-world concurrency bugs have been exploited
in practice. If concurrency attacks are not practica-
ble we need not worry about them. (Section 2).

§ What factors make concurrency errors easy to ex-
ploit? If attackers have to jump through hoops to
exploit any concurrency error, they will likely go
after other low-hanging errors. (Section 3).

§ Can we leverage these factors to improve the ef-
fectiveness of existing concurrency error detection
techniques? (Section 4).

§ How do concurrency attacks weaken existing de-
fenses such as taint tracking and intrusion detection
and how can we fix them? (Section 5).

Our study yields several interesting findings. We
find that concurrency attacks are indeed real as we find
plenty of exploitable concurrency errors in the CVE
database [3]. Interestingly, few of these errors have ap-
peared in prior studies or race detection literature, sug-
gesting that the research communities may not be aware
their existence or impact. We observe that how ex-
ploitable a concurrency error is highly depends on the
size of the timing window within which the error may
occur which we call the vulnerability window. Further,
an attacker can expand this window through carefully
crafted inputs. Our study shows that many common
mechanisms in existing defenses will not work against
concurrency attacks. We propose fixes to some of these
weaknesses and also propose new defense directions.

We hope that our initial work on concurrency at-
tacks will further stress the importance of ongoing
work on better programming languages and specifica-
tions [12, 20], runtime systems [9, 10, 16, 17, 24], and
tools [18, 22, 26, 36, 38] for concurrent programs. In

1



addition, we hope that it will raise awareness of concur-
rency attacks and motivate fellow researchers to work
on preventing them. The raw data including URLs
to the concurrency errors and sometimes their exploits
and our detailed categorization of the errors studied
are available at http://systems.cs.columbia.
edu/projects/concurrency/.

2 Concurrency Attacks Are Real

To construct concurrency attacks, we initially tried ex-
ploiting concurrency errors in existing benchmarks [21,
25]. Unfortunately, quite a few of these errors cannot
be triggered without manually injecting sleep() calls.
Moreover, many, such as the errors in SPLASH2, are
practically harmless from a security perspective. The
worst ones tend to cause only program crashes, not the
security exploits we want.

We then turned to the race section of the CVE
database [3], which fortunately lists many exploitable
concurrency errors besides the familiar file system Time-
of-Check-to-Time-of-Use (TOCTOU) races [27, 32, 33,
35]. We also examined the bug databases of popular soft-
ware. From these sources, we collected concurrency er-
rors that are exploitable and have detailed description,
such as a well-written report of the error, sample exploit
code, or a source patch. We then carefully inspected
these materials to understand the cause of the errors and
how they can be exploited. Although collecting these
errors is not difficult, understanding, categorizing, and
sometimes reproducing them absorbs most of our efforts.

These errors range across four main OS environments,
including Windows, MacOS X, Linux, and Apple iOS.
These errors are from a diverse set of 23 real-world pro-
grams, including kernels such as the Linux, system li-
braries such as GNU Libc, and user-space programs such
as KDE, Apache, and Chrome. We hope this diversity in-
creases the coverage and value of our dataset.

In the remaining of this section, we present five exam-
ples of exploitable concurrency errors.

Linux. Figure 1 shows an example concurrency er-
ror that corrupts pointer data in the Linux kernel. This
violation is quite serious: a working exploit of this vi-
olation enables a local user to gain root access or ex-
ecute arbitrary code within ring 0 [6, 29]. Specif-
ically, this violation occurs as follows. To load a
shared library in ELF format, a process issues sys-
tem call uselib(), which subsequently calls function
load elf binary() (Figure 1). This function cor-
rectly holds the semaphore mmap sem the first time it
modifies the current process’s memory map structures
(line 2–4). However, when it modifies these data struc-
tures the second time by calling do brk() (line 7), it
does not hold the right semaphore. Thus, another thread
in the same process may be modifying the memory map

1 : load elf library(. . .) {
2 : down write(&current−>mm−>mmap sem);
3 : error = do map(. . .); // CORRECT
4 : up write(&current−>mm−>mmap sem);
5 : . . .
6 : if(bss > len)
7 : do brk(. . .);
8 : }
9 : do brk(. . .) {
10: struct mm struct * mm = current−>mm;
11: . . .
12: vma = kmem cache alloc(. . .);
13: . . . // initialize vma
14: // ERROR! link vma to possibly stale mm!
15: vma link(mm, vma, . . .); // link vma onto mm
16: }

Figure 1: Linux kernel memory map corruption.

1 : nptl setxid (struct xid command *cmdp)
2 : {
3 : lll lock (stack cache lock);
4 : // signal all threads on list to set user id.
5 : // a thread is represented as a stack
6 : list for each (runp, &stack used)
7 : {
8 : struct pthread *t = list entry (runp, struct pthread, list);
9 : if (t == self)
10: continue;
11: setxid signal thread (cmdp, t);
12: }
13: lll unlock (stack cache lock);
14: // ERROR: does not wait for other threads to acknowledge
15: }
16: allocate stack(. . .) { // called when a new thread is created
17: lll lock (stack cache lock);
18: list add (&pd−>list, &stack used);
19: lll unlock (stack cache lock);
20: }

Figure 2: Glibc setuid race.

structures concurrently while this do brk() call is run-
ning, causing kernel memory corruption.

Glibc. Figure 2 shows a concurrency error that cor-
rupts the user identities, and allows privilege escalation
attacks [4]. This bug is caused by Glibc’s default thread
library, nptl, not handling setuid() atomically. In
Linux, each kernel thread has its own set of user iden-
tities (user ID, effective user ID, etc). However, POSIX
standards require that all other threads in the same pro-
cess have identical user identities. Thus, when one thread
calls setuid(), nptl has to ensure that all threads in
the current process call setuid(). It does so using
function nptl setxid() in Figure 2, which iterates
through a list of all threads and signals each thread to call
setuid() (line 6–12). However, this function releases
the lock stack cache lock protecting the thread list,
before it waits for all threads to finish setting their identi-
fiers. A new thread may be created, and still have the old

2

http://systems.cs.columbia.edu/projects/concurrency/
http://systems.cs.columbia.edu/projects/concurrency/


1 : bool FastCopy (MonoArray *src, MonoArray* dest, int length){
2 : // Checks that the type of dst[i] derive from src[i]
3 : for (i = 0; i < length; ++i)
4 : if(!safe cast(type of(src[i]), type of(dest[i])))
5 : return FALSE;
6 :
7 : //ERROR: another thread might run
8 : // dst[0] = object with incompatible type;
9 :
10: // directly copy the bytes with memcpy()
11: for (i = 0; i < length; ++i)
12: memcpy(dest[i], src[i], size of(ObjPtr));
13: return TRUE;
14: }

Figure 3: Moonlight fast array copy race.

user identifiers. Since setuid() is often called to drop
privileges, a thread skipping setuid() can thus result
in privilege escalation.

Moonlight. Figure 3 shows an atomicity error [7]
that allows an attacker to silently violate type safety in
Moonlight, a Silverlight browser plugin implementation
of the Mono open-source .NET framework. To speed
up the array copying process, the FastCopy()method
first checks that the types of the destination element and
the source element are compatible (line 3–5) and, if so,
performs a fast element-wise memcpy() instead of a
slow copy implemented as CLR instructions. However,
the type check and the copy are not implemented as one
atomic step, allowing an attacker to change the destina-
tion array after the type check, compromising type safety.
For instance, the attacker can create a new type with the
same field layout, except that all fields in this new type
are public, thus gaining access to the private fields in
the original object.

MSIE. Another example is the MSIE R6025 ex-
ploit [2] which allows an attacker to launch a code injec-
tion attack to Microsoft Internet Explorer (IE) through a
malicious webpage. Specifically, when IE opens the ma-
licious page in multiple windows, the javascript code in
the page calls the appendChild() method to append
a DHTML element of one window to an element of an-
other. A race in appendChild() can corrupt a func-
tion pointer in the heap. To reliably exploit this function
pointer corruption, the attacker sprays the heap by re-
peatedly invoking the DHTML createComments()

function, before calling appendChild().

iOS. Our study also reveals physical proximity at-

tacks, a unique class of attacks carried out in human-
time. Such attacks typically exploit concurrency errors
in the user interface (UI) logic. There have been several
demonstrated vulnerabilities in the UI logic of Apple’s
iOS that allow attackers to bypass the passcode protec-
tion screen by executing a timed sequence of physical
actions. Consider the latest vulnerability in iOS version

F
re

q
u
e
n
cy

 o
f 
E

xp
lo

its

Duration of Vulnerable Window

Mem-Race Vulns (ns)
File-Race Vulns (ms)

Physical-Proximity-Race Vulns (seconds)

Figure 4: Our study suggests a likely tri-modal distri-
bution of the duration of the vulnerable window for all
concurrency attacks. Intuitively, this distribution can be
broken into at least three distinguishable ranges, corre-
sponding to concurrency errors culminating in memory,
file, and physical proximity based exploit.

4. When presented with a passcode screen, an attacker
can hit the “Emergency Call” button, enter a malformed
phone number such as “###”, and then quickly hit the
screen lock button to bypass the passcode screen. Sev-
eral other physical proximity attacks which exploit UI
race conditions have been identified [1, 5, 8].

3 Observations of Concurrency Attacks

Vulnerable window duration heavily affects ex-
ploitability. In our analysis, we find that the exploitabil-
ity of a concurrency error heavily depends on the du-
ration of its vulnerable window—the timing window in
which the concurrency error may occur. Figure 4 shows
a tri-modal distribution of the vulnerable window dura-
tion suggested by our study.

Out of the 46 concurrency errors we studied, 3 allow
physical proximity attacks. These errors have vulnerable
windows measured in human time. Exploiting them is
easy because attackers simply need to manually trigger
a sequence of UI events. Of the 46 errors we studied,
13 allow file system TOCTOU attacks. These races have
vulnerability windows measured in quanta of disk access
time. This relatively large vulnerable window duration
makes file races also easy to exploit: attackers typically
re-run a command a few times (possibly using a shell
script). Majority of the studied errors allow memory data
to be corrupted or inconsistently exposed. The vulnera-
ble windows of these errors are measured in quanta of
memory access time. These errors are harder to exploit
than the previous two classes of errors because attack-
ers have to make the offending events occur within small
timing windows. In addition, hardware cache leases or
CPU time slices are often larger than these small win-
dows, masking the errors.

Nonetheless, our study shows that the third class of
errors can also be exploited using two styles of attacks.
First, an attacker can retry many times to increase the

3



probability of success. The MSIE error described in the
previous section falls into this category, whose exploit
repeatedly triggers the racing appendChild() calls
in different threads. However, an excessive number of
retires is easy to detect using for example anomaly de-
tectors, so we expect this style of attack may not be
as dangerous as the second style of attack, where at-
tackers can use carefully crafted input to enlarge the
vulnerability window. For instance, the exploit of the
moonlight error in Figure 3 enlarges the vulnerabil-
ity window by copying a large array, increasing the
number of iterations of the type check loop (line 3–
5). As another example, the exploit of the Linux er-
ror in Figure 1 enlarges the vulnerable window by trig-
gering blocking operations such as disk access. Specif-
ically, do brk calls kmem cache alloc to allocate
memory. In normal case when there is free memory,
kmem cache alloc returns immediately, and the vul-
nerability window (line 10–15) is small. However, the
exploit of this error allocates a large amount of memory
to drive the system into low memory state, so that the
call to kmem cache alloc has to swap used memory
to disk to make room for this new allocation request. The
vulnerable window thus lasts as long as a disk access,
making it highly likely to corrupt the memory map.

Concurrency errors in API methods are particu-
larly prone to concurrency attacks. The reasons are
two fold. First, an API, such as the system call interface
or the Silverlight runtime interface, often coincides with
a protection boundary. That is, the application code of-
ten cannot access sensitive data directly. Instead, it has
to do so through the API methods. To corrupt this sen-
sitive data, an attacker has to exploit the errors in the
API methods. The Linux and the moonlight errors are
two examples illustrating this point. Second, an API is
typically provided to support third-party, potentially un-
trusted programs. Leveraging this support, attackers can
carefully craft malicious code of her choice to run on
top of and programmatically exploit the buggy API. The
Linux, the moonlight, and the MSIE errors are exam-
ples illustrating this point; their exploits were carefully
crafted to retry an attack or force events to occur in a
dangerous temporal order.

Concurrency attacks are more than just TOCTOU
attacks. Our goal is to bring attention to general concur-
rency attacks that target errors in concurrent programs.
These attacks are much broader than the TOCTOU at-
tacks studied by previous work [27, 32, 33, 35]. The
reasons are threefold.

First, the TOCTOU attacks in previous work target pri-
marily the file system interface. This interface allows
users to check file permissions and use file data, but does
not directly support transactions that make the check and

the use atomic. An attacker may thus exploit this limita-
tion to gain illegal file accesses. In contrast, the general
concurrency attacks we study may target many different
programming interfaces such as a language runtime in-
terface or the load/store memory interface, corrupt not
just file data but general shared program data, and lead
to effects more serious than illegal file accesses.

Second, the TOCTOU races in previous work exhibit
one specific interleaving pattern: atomicity violations
where the check and the use is not atomic. In contrast,
the general concurrency errors we study may be simple
read-write or write-write races, or execution order viola-
tions [25] where a set of accesses is supposed to occur in
a fixed order, but no synchronizations enforce the order.

Third, as a natural fallout of the first two reasons, tech-
niques proposed by previous TOCTOUwork are too spe-
cific to detect or prevent general concurrency attacks.
For instance, while launching a TOCTOU attack requires
concurrent executions, the vulnerable program may be
purely sequential, so TOCTOU detectors (e.g., [35]) may
not need to reason about concurrency at all. Similarly,
TOCTOU detectors may mediate all file system calls
without high runtime overhead (e.g., [33]), but it would
be prohibitive to mediate all load or store instructions to
detect memory races.

4 Implications on Detection Techniques

It is unfortunate that existing concurrency-error detec-
tion techniques have not reached the maturity of sequen-
tial tools. Dynamic detectors are not good for detecting
security vulnerabilities because they tend to cover only
the executions or code run. Static detectors tend to give
many false positives, burying the true errors.

Fortunately, leveraging the observations we made in
the previous section, we can improve the effectiveness
of these detection techniques. One idea is to prioritize
detection towards the API methods at protection bound-
aries. These API methods must correctly protect sen-
sitive data in face of abuses from arbitrarily malicious
programs. In addition, errors in the API methods may
have particularly bad impact as they may be used by a
wide range of programs. A related idea is to prioritize
detection toward sensitive data, such as user identities
(corrupted by the glibc error), function pointers (MSIE),
type data (Moonlight), process memory map (Linux).

Another idea is to rank the error reports of static de-
tectors based on the vulnerable window duration, so that
developers can inspect the errors that are more danger-
ous, i.e., easier to exploit, first. For instance, if a vul-
nerable window of code may block, such as issuing as
a disk or network I/O, or may loop an input-dependent
number of iterations, then the corresponding error should
be ranked high. Identifying code that may block is rel-
atively straightforward: we can annotate the leaf oper-

4



// thread t1 thread t2
taint[x] = taint[bad];

taint[x] = taint[good];
x = good;

x = bad;

Figure 5: Data race renders taint tracking unsafe.

ations that may block, then flag any function that may
transitively call these operations as blocking. To identify
input-dependent loop bounds, we may use taint analysis
or symbolic execution to track where user inputs flow.

5 Implications on Defense Techniques

Security researchers have developed many defenses that
prevent security exploits at runtime. However, they tend
to assume only sequential programs. We thus want to
understand (1) which defense techniques are still effec-
tive against concurrency attacks and (2) for those that are
ineffective, how to fix them.

In this section, we attempt to answer these questions
by analyzing a plethora of defense techniques [11, 14,
15, 19] from the research literature. Instead of describing
how each of these defenses is weakened, we first extract
five commonmechanisms that underlie many of these de-
fense tools such as memory safety tools, taint trackers,
and intrusion detection systems. We then analyze how
each mechanism is affected by concurrency.

Metadata tracking. Techniques such as taint track-
ing or memory safety enforcement track program data
with metadata, such as taint tags or array bounds. If the
tracked program has a data race, the race may manifest
on the metadata owned by the defense technique, render-
ing it unsafe. Figure 5 illustrates this problem using a
contrived example. The original code has a race on vari-
able x: thread t1 assigns a tainted bad value to x and
thread t2 assigns a untainted good value to x. The in-
terleaving in the figure can cause the taint tag of x to be
inconsistent with the value of x. That is, at the end of the
execution, the tag of x indicates that x is untainted, but
the value of x is bad.

Software checks. Many techniques rely on software
checks to validate untrusted data. For instance, a taint
tracker checks that a piece of data is untainted before us-
ing it in a dangerous operation; a memory safety tool
checks that a pointer is within bounds before deferenc-
ing it; and a type checker ensures type safety (such the
fast copy type check in Figure 3). These techniques, if
unaware of concurrency, are prone to general TOCTOU
attacks if the check and the use are not made atomic
against concurrently running code. Software checks on
stack data are typically not affected by concurrency er-
rors because stack data is rarely shared.

Anomaly detection. Typical anomaly detection sys-
tems work by learning normal program behaviors, then
detect deviations from the learned behaviors. Compli-
cations arise at both steps for concurrency attacks. For
instance, if an anomaly detector learns behaviors only
with respect to a single thread in a multithreaded system,
it may miss anomalies involving multiple threads. On
the flip side, if the anomaly detector models behaviors
of all threads, the model may become overly complex
and noisy. For instance, multiple threads may issue con-
current system calls, making the n-gram model [19] too
noisy. In other words, we lack simple and accurate mod-
els for the behaviors of concurrent programs. (Content-
based anomaly detection techniques [30] may still work.)

Hardware checks. Some techniques rely on hard-
ware checks. For instance, several defense techniques
prevent code injection attacks by marking pages non-
executable via the NX bit. These techniques should work
in concurrent models because the check is performed
atomically by the hardware at the time of use.

Randomization. Address Space Randomization or
instruction set randomization work by hindering the im-
pact step. They should be equally effective for both con-
currency and sequential attacks.

To summarize, three out of the five mechanisms dis-
cussed above are weakened by concurrency. Although
fixing anomaly detection for concurrent programs may
be difficult, fixing metadata tracking and software checks
appear viable using standard approaches. For instance, a
defense technique can use locks to enforce atomicity; it
can also make a local copy of a piece of shared data,
then perform the check and the use on the local data for
atomicity. However, these fixes may introduce high per-
formance overhead, and how to make them practical re-
mains an open research challenge.

6 Related Work

Since we have discussed related work on attacks and
defenses throughout this paper, this section focuses on
related empirical studies of software errors and attacks.
Previous work studied a large number of operating sys-
tem errors [13]. The study focuses on sequential errors
detected by an automated static analysis tool. Recently,
Lu et al. studied many concurrency errors from real soft-
ware such as MySQL and Apache [25]. Their analysis
focuses on interleaving and memory access characteris-
tics of concurrency errors, whereas ours focuses on the
security, exploit, and defense aspects of the concurrency
errors. Jalbert et al. created the RADBench concurrency
error suite and proposed an approach to make them easy
to reproduce [21].

Watson presented a specific concurrency attack
against system call interposition [34]. Sender and Vider-

5



gar presented a toy example of concurrency attacks in
web applications in Blackhat ’08 [28]. These studies are
not based on real concurrency errors; nor did they an-
alyze broadly the detection and defense implications of
the concurrency attacks.

7 Discussion

In this paper we catalogued concurrency attacks in the
wild and presented their characteristics. We studied 46
different types of exploits and categorized them based
on the duration of the vulnerabilities. We also observed
that the risk of concurrency attacks is proportional to the
duration of the vulnerability window, and further that at-
tackers may be able to dilate the vulnerability windows
to facilitate attack.

Our study of concurrency attacks and existing de-
fenses inspire us to look for new, effective defense tech-
niques. The reasons are three-fold. First, we note that
some existing defense techniques such as taint track-
ing may fail to work in the presence of concurrency er-
rors. Second, there are very few effective defense tech-
niques for concurrency attacks that corrupt scalar data.
Finally, based on our analysis of the wide spectrum of
the concurrency-error exploits, a single mechanism is un-
likely to defend against all types of concurrency attacks.

Consequently, two challenging research questions
arise from our study. First, can we develop defense
mechanisms which can mitigate all concurrency errors
regardless of vulnerability window duration? Second,
given an arbitrary program, can we identify, with some
confidence, the most likely type of concurrency vulnera-
bility to exist in a region of the program, assuming that a
vulnerability does exist?

An important requirement is that defense mechanisms
against concurrency attacks should not require a priori

knowledge of the existence of particular concurrency er-
rors. Traditionally, randomization techniques have been
used to successfully mitigate unknown errors. For in-
stance, address space randomization and instruction set
randomization are often the “universal last resort” to mit-
igate many traditional sequential attacks. We believe that
timing randomization techniques may be able to defend
against unknown concurrency attacks.

Acknowledgement

We thank Madan Musuvathi and the anonymous review-
ers for providing many helpful comments. John Gal-
lagher helped in the initial stages of this work [37]. This
work was supported in part by AFRL FA8650-11-C-
7190 (DARPAMRC), FA8650-10-C-7024, and FA8750-
10-2-0253 (DARPA CRASH); NSF CNS-1117805,
CNS-1054906 (CAREER), CNS-1012633, and CNS-
0905246; ONR N00014-12-1-0166; and a Sloan fellow-
ship. This paper’s opinions, findings, conclusions, and

recommendations are those of the authors and do not
necessarily reflect the views of the US Government.

References

[1] CVE-2010-1754. http://www.cvedetails.
com/cve/CVE-2010-1754.

[2] MSIE javaprxy.dll COM object exploit. http://
www.exploit-db.com/exploits/1079.

[3] Common vulnerabilities and exposures database.
http://cvedetails.com.

[4] RHBA-2009:1634-1. http://rhn.redhat.
com/errata/RHBA-2009-1634.html.

[5] CVE-2008-0034. http://www.cvedetails.
com/cve/CVE-2008-0034.

[6] CVE-2004-1235. http://www.cvedetails.
com/cve/CVE-2004-1235.

[7] CVE-2011-0990. http://www.cvedetails.
com/cve/CVE-2011-0990.

[8] CVE-2010-0923. http://www.cvedetails.
com/cve/CVE-2010-0923.

[9] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: a compiler and runtime
system for deterministic multithreaded execution.
In Fifteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’10), pages 53–64, 2010.

[10] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. No-
vark. Grace: Safe and efficient concurrent program-
ming. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOP-
SLA ’09), 2009.

[11] E. Bhatkar, D. C. Duvarney, and R. Sekar. Ad-
dress obfuscation: an efficient approach to combat
a broad range of memory error exploits. In Pro-
ceedings of the 12th USENIX Security Symposium,
pages 105–120, 2003.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Don-
awa, A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Conference
on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’05), pages
519–538, 2005.

[13] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. En-
gler. An empirical study of operating systems er-
rors. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), pages
73–88, Nov. 2001.

6

http://www.cvedetails.com/cve/CVE-2010-1754
http://www.cvedetails.com/cve/CVE-2010-1754
http://www.exploit-db.com/exploits/1079
http://www.exploit-db.com/exploits/1079
http://cvedetails.com
http://rhn.redhat.com/errata/RHBA-2009-1634.html
http://rhn.redhat.com/errata/RHBA-2009-1634.html
http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2008-0034
http://www.cvedetails.com/cve/CVE-2004-1235
http://www.cvedetails.com/cve/CVE-2004-1235
http://www.cvedetails.com/cve/CVE-2011-0990
http://www.cvedetails.com/cve/CVE-2011-0990
http://www.cvedetails.com/cve/CVE-2010-0923
http://www.cvedetails.com/cve/CVE-2010-0923


[14] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
Proceedings of the Seventh USENIX Security Sym-
posium, 1998.

[15] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer over-
flow vulnerabilities. In Proceedings of the 12th
USENIX Security Symposium, 2003.

[16] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable de-
terministic multithreading through schedule mem-
oization. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[17] H. Cui, J. Wu, J. Gallagher, H. Guo, and
J. Yang. Efficient deterministic multithreading
through schedule relaxation. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), Oct. 2011.

[18] J. Erickson, M. Musuvathi, S. Burckhardt, and
K. Olynyk. Effective data-race detection for the
kernel. In Proceedings of the Ninth Symposium
on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[19] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In
Proceedings of the 1996 IEEE Symposium on Se-
curity and Privacy (SP ’96), 1996.

[20] ISO. C++0x Standards, ISO/IEC 14882:2011.

[21] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. Rad-
bench: a concurrency bug benchmark suite. In
Proceedings of the 3rd USENIX conference on Hot
topic in parallelism (HOTPAR ’11), 2011.

[22] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit.
Automated atomicity-violation fixing. In Proceed-
ings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementa-
tion (PLDI ’11), 2011.

[23] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[24] T. Liu, C. Curtsinger, and E. D. Berger.
DTHREADS: efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11), 2011.

[25] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world con-
currency bug characteristics. In Thirteenth Interna-
tional Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS ’08), 2008.

[26] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language De-
sign and Implementation (PLDI ’07), 2007.

[27] M. Payer and T. R. Gross. Protecting applications
against TOCTTOU races by user-space caching of
file metadata. In Proceedings of the Eighth Inter-
national Conference on Virtual Execution Environ-
ments (VEE ’12), pages 215–226, 2012.

[28] S. Sender and A. Vidergar. Concurrency attacks in
web applications. Blackhat ’08.

[29] P. Starzetz. uselib() privilege elevation. http://
www.isec.pl/vulnerabilities/
isec-0021-uselib.txt.

[30] S. J. Stolfo, F. Apap, E. Eskin, K. Heller, S. Her-
shkop, A. Honig, and K. Svore. A comparative
evaluation of two algorithms for windows registry
anomaly detection. J. Comput. Secur., 13:659–693,
July 2005.

[31] H. Sutter and J. Larus. Software and the concur-
rency revolution. ACM Queue, 3(7):54–62, 2005.

[32] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva.
Portably solving file TOCTTOU races with hard-
ness amplification. In Sixth USENIX conference on
File and Storage Technologies(FAST ’08), 2008.

[33] E. Tsyrklevich and B. Yee. Dynamic detection and
prevention of race conditions in file accesses. In
Proceedings of the 12th USENIX Security Sympo-
sium, 2003.

[34] R. N. M. Watson. Exploiting concurrency vulnera-
bilities in system call wrappers. In Proceedings of
the first USENIX workshop on Offensive Technolo-
gies (WOOT ’07), 2007.

[35] J. Wei and C. Pu. TOCTTOU vulnerabilities in
UNIX-style file systems: an anatomical study. In
Fourth USENIX conference on File and Storage
Technologies(FAST ’05), 2005.

[36] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound
and precise analysis of parallel programs through
schedule specialization. In Proceedings of the
ACM SIGPLAN 2012 Conference on Programming
Language Design and Implementation (PLDI ’12),
2012.

[37] J. Yang, A. Cui, J. Gallagher, S. Stolfo, and
S. Sethumadhavan. Concurrency attacks. Technical
Report CUCS-028-11, Columbia University.

[38] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz,
G. Jin, S. Lu, and T. Reps. ConSeq: detecting
concurrency bugs through sequential errors. In
Sixteenth International Conference on Architecture
Support for Programming Languages and Operat-
ing Systems (ASPLOS ’11), pages 251–264, 2011.

7

http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt
http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt
http://www.isec.pl/vulnerabilities/isec-0021-uselib.txt

	1 Introduction
	2 Concurrency Attacks Are Real
	3 Observations of Concurrency Attacks
	4 Implications on Detection Techniques
	5 Implications on Defense Techniques
	6 Related Work
	7 Discussion

