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Abstract

In this paper we discuss our research in developing gen-
eral and systematic methods for intrusion detection. The
key ideas are to use data mining techniques to discover
consistent and useful patterns of system features that de-
scribe program and user behavior, and use the set of rel-
evant system features to compute (inductively learned)
classifiers that can recognize anomalies and known in-
trusions. Using experiments on thesendmailsystem call
data and the networktcpdumpdata, we demonstrate that
we can construct concise and accurate classifiers to de-
tect anomalies. We provide an overview on two general
data mining algorithms that we have implemented: the
association rules algorithm and the frequent episodes al-
gorithm. These algorithms can be used to compute the
intra- and inter- audit record patterns, which are essential
in describing program or user behavior. The discovered
patterns can guide the audit data gathering process and
facilitate feature selection. To meet the challenges of
both efficient learning (mining) and real-time detection,
we propose an agent-based architecture for intrusion de-
tection systems where the learning agents continuously
compute and provide the updated (detection) models to
the detection agents.

1 Introduction

As network-based computer systems play increasingly
vital roles in modern society, they have become the tar-
gets of our enemies and criminals. Therefore, we need
to find the best ways possible to protect our systems.

The security of a computer system is compromised when�This research is supported in part by grants from DARPA
(F30602-96-1-0311) and NSF (IRI-96-32225 and CDA-96-25374)

an intrusion takes place. An intrusion can be defined
[HLMS90] as “any set of actions that attempt to com-
promise the integrity, confidentiality or availability of
a resource”. Intrusion prevention techniques, such as
user authentication (e.g. using passwords or biometrics),
avoiding programming errors, and information protec-
tion (e.g., encryption) have been used to protect com-
puter systems as a first line of defense. Intrusion preven-
tion alone is not sufficient because as systems become
ever more complex, there are always exploitable weak-
ness in the systems due to design and programming er-
rors, or various “socially engineered” penetration tech-
niques. For example, after it was first reported many
years ago, exploitable “buffer overflow” still exists in
some recent system software due to programming er-
rors. The policies that balance convenience versus strict
control of a system and information access also make it
impossible for an operational system to be completely
secure.

Intrusion detection is therefore needed as another wall
to protect computer systems. The elements central to
intrusion detection are:resourcesto be protected in a
target system, i.e., user accounts, file systems, system
kernels, etc;modelsthat characterize the “normal” or
“legitimate” behavior of these resources;techniquesthat
compare the actual system activities with the established
models, and identify those that are “abnormal” or “intru-
sive”.

Many researchers have proposed and implemented dif-
ferent models which define different measures of system
behavior, with an ad hoc presumption that normalcy and
anomaly (or illegitimacy) will be accurately manifested
in the chosen set of system features that are modeled and
measured. Intrusion detection techniques can be catego-
rized intomisuse detection, which uses patterns of well-
known attacks or weak spots of the system to identify
intrusions; andanomaly detection, which tries to deter-
mine whether deviation from the established normal us-



age patterns can be flagged as intrusions.

Misuse detection systems, for example [KS95] and
STAT [IKP95], encode and match the sequence of “sig-
nature actions” (e.g., change the ownership of a file) of
known intrusion scenarios. The main shortcomings of
such systems are: known intrusion patterns have to be
hand-coded into the system; they are unable to detect
any future (unknown) intrusions that have no matched
patterns stored in the system.

Anomaly detection (sub)systems, such as
IDES [LTG+92], establish normal usage patterns
(profiles) using statistical measures on system features,
for example, the CPU and I/O activities by a particular
user or program. The main difficulties of these systems
are: intuition and experience is relied upon in selecting
the system features, which can vary greatly among
different computing environments; some intrusions can
only be detected by studying the sequential interrelation
between events because each event alone may fit the
profiles.

Our research aims to eliminate, as much as possible, the
manual and ad-hoc elements from the process of build-
ing an intrusion detection system. We take a data-centric
point of view and consider intrusion detection as a data
analysis process. Anomaly detection is about finding the
normal usage patterns from the audit data, whereas mis-
use detection is about encoding and matching the intru-
sion patterns using the audit data. The central theme of
our approach is to apply data mining techniques to in-
trusion detection. Data mining generally refers to the
process of (automatically) extracting models from large
stores of data [FPSS96]. The recent rapid development
in data mining has made available a wide variety of algo-
rithms, drawn from the fields of statistics, pattern recog-
nition, machine learning, and database. Several types of
algorithms are particularly relevant to our research:

Classification: maps a data item into one of several pre-
defined categories. These algorithms normally out-
put “classifiers”, for example, in the form of deci-
sion trees or rules. An ideal application in intrusion
detection will be to gather sufficient “normal” and
“abnormal” audit data for a user or a program, then
apply a classification algorithm to learn a classifier
that will determine (future) audit data as belonging
to the normal class or the abnormal class;

Link analysis: determines relations between fields in
the database. Finding out the correlations in audit
data will provide insight for selecting the right set
of system features for intrusion detection;

Sequence analysis:models sequential patterns. These

algorithms can help us understand what (time-
based) sequence of audit events are frequently en-
countered together. These frequent event patterns
are important elements of the behavior profile of a
user or program.

We are developing a systematic framework for design-
ing, developing and evaluating intrusion detection sys-
tems. Specifically, the framework consists of a set of
environment-independent guidelines and programs that
can assist a system administrator or security officer to� select appropriate system features from audit data

to build models for intrusion detection;� architect a hierarchical detector system from com-
ponent detectors;� update and deploy new detection systems as
needed.

The key advantage of our approach is that it can auto-
matically generate concise and accurate detection mod-
els from large amount of audit data. The methodology
itself is general and mechanical, and therefore can be
used to build intrusion detection systems for a wide va-
riety of computing environments.

The rest of the paper is organized as follows: Sec-
tion 2 describes our experiments in building classifica-
tion models forsendmailand network traffic. Section 3
presents the association rules and frequent episodes al-
gorithms that can be used to compute a set of patterns
from audit data. Section 4 briefly highlights the archi-
tecture of our proposed intrusion detection system. Sec-
tion 5 outlines our future research plans.

2 Building Classification Models

In this section we describe in detail our experiments
in constructing classification models for anomaly de-
tection. The first set of experiments, first reported in
[LSC97], is on thesendmailsystem call data, and the
second is on the networktcpdumpdata.

2.1 Experiments onsendmail Data

There have been a lot of attacks on computer systems
that are carried out as exploitations of the design and



programming errors in privileged programs, those that
can run as root. For example, a flaw in thefingerdae-
mon allows the attacker to use “buffer overflow” to trick
the program to execute his malicious code. Recent re-
search efforts by Ko et al. [KFL94] and Forrest et al.
[FHSL96] attempted to build intrusion detection systems
that monitor the execution of privileged programs and
detect the attacks on their vulnerabilities. Forrest et al.
discovered that the short sequences of system calls made
by a program during its normal executions are very con-
sistent, yet different from the sequences of its abnormal
(exploited) executions as well as the executions of other
programs. Therefore a database containing these nor-
mal sequences can be used as the “self” definition of the
normal behavior of a program, and as the basis to de-
tect anomalies. Their findings motivated us to search for
simple and accurate intrusion detection models.

Stephanie Forrest provided us with a set of traces of the
sendmailprogram used in her experiments [FHSL96].
We applied machine learning techniques to produce
classifiers that can distinguish the exploits from the nor-
mal runs.

2.1.1 Thesendmail System Call Traces

The procedure of generating thesendmailtraces were
detailed in [FHSL96]. Briefly, each file of the trace
data has two columns of integers, the first is the process
ids and the second is the system call “numbers”. These
numbers are indices into a lookup table of system call
names. For example, the number “5” represents system
call open. The set of traces include:

Normal traces: a trace of thesendmaildaemon and a
concatenation of several invocations of thesend-
mail program;

Abnormal traces: 3 traces of thesscp(sunsendmailcp)
attacks, 2 traces of thesyslog-remoteattacks, 2
traces of thesyslog-localattacks, 2 traces of thede-
codeattacks, 1 trace of thesm5xattack and 1 trace
of thesm565aattack. These are the traces of (var-
ious kinds of) abnormal runs of thesendmailpro-
gram.

2.1.2 Learning to Classify System Call Sequences

In order for a machine learning program to learn the clas-
sification models of the “normal” and “abnormal” sys-
tem call sequences, we need to supply it with a set of

System Call Sequences (length 7)Class Labels
4 2 66 66 4 138 66 “normal”
... ...
5 5 5 4 59 105 104 “abnormal”
... ...

Table 1: Pre-labeled System Call Sequences of Length 7

training data containing pre-labeled “normal” and “ab-
normal” sequences. We use a sliding window to scan
the normal traces and create a list of unique sequences
of system calls. We call this list the “normal” list. Next,
we scan each of the intrusion traces. For each sequence
of system calls, we first look it up in the normal list. If
an exact match can be found then the sequence is labeled
as “normal”. Otherwise it is labeled as “abnormal” (note
that the data gathering process described in [FHSL96]
ensured that the normal traces include nearly all possible
“normal” short sequences of system calls, as new runs ofsendmail failed to generate new sequences). Needless
to say all sequences in the normal traces are labeled as
“normal”. See Table 1 for an example of the labeled se-
quences. It should be noted that an intrusion trace con-
tains many normal sequences in addition to the abnormal
sequences since the illegal activities only occur in some
places within a trace.

We applied RIPPER [Coh95], a rule learning program,
to our training data. The following learning tasks were
formulated to induce the rule sets for normal and abnor-
mal system call sequences:� Each record hasn positional attributes,p1, p2, . . . ,pn, one for each of the system calls in a sequence of

lengthn; plus a class label, “normal” or “abnormal”� The training data is composed of normal sequences
taken from80% of the normal traces, plus the ab-
normal sequences from 2 traces of thesscp attacks,
1 trace of thesyslog-localattack, and 1 trace of the
syslog-remoteattack� The testing data includes both normal and abnormal
traces not used in the training data.

RIPPER outputs a set of if-then rules for the “minority”
classes, and a default “true” rule for the remaining class.
The following exemplar RIPPER rules were generated
from the system call data:

normal:-p2 = 104, p7 = 112. [meaning: ifp2
is 104 (vtimes) andp7 is 112 (vtrace) then
the sequence is “normal”]



normal:-p6 = 19, p7 = 105. [meaning: ifp6
is 19 (lseek) andp7 is 105 (sigvec) then the
sequence is “normal”]

. . .

abnormal:- true. [meaning: if none of the
above, the sequence is “abnormal”]

These RIPPER rules can be used to predict whether a se-
quence is “abnormal” or “normal”. But what the intru-
sion detection system needs to know is whether the trace
being analyzed is an intrusion or not. We use the fol-
lowing post-processing scheme to detect whether a given
trace is an intrusion based on the RIPPER predictions of
its constituent sequences:

1. Use a sliding window of length2l+1, e.g., 7, 9, 11,
13, etc., and a sliding (shift) step ofl, to scan the
predictions made by the RIPPER rules on system
call sequences.

2. For each of the (length2l + 1) regions of RIPPER
predictions generated in Step1, if more thanl pre-
dictions are “abnormal” then the current region of
predictions is an “abnormal” region. (Note thatl is
an input parameter).

3. If the percentage of abnormal regions is above a
threshold value, say2%, then the trace is an intru-
sion.

This scheme is an attempt to filter out the spurious pre-
diction errors. The intuition behind this scheme is that
when an intrusion actually occurs, the majority of adja-
cent system call sequences are abnormal; whereas the
prediction errors tend to be isolated and sparse. In
[FHSL96], the percentage of the mismatched sequences
(out of the total number of matches (lookups) performed
for the trace) is used to distinguish normal from abnor-
mal. The “mismatched” sequences are the abnormal se-
quences in our context. Our scheme is different in that
we look for abnormal regions that contain more abnor-
mal sequences than the normal ones, and calculate the
percentage of abnormal regions (out of the total number
of regions). Our scheme is more sensitive to the tempo-
ral information, and is less sensitive to noise (errors).

RIPPER only outputs rules for the “minority” class. For
example, in our experiments, if the training data has
fewer abnormal sequences than the normal ones, the
output RIPPER rules can be used to identify abnormal
sequences, and the default (everything else) prediction
is normal. We conjectured that a set of specific rules
for normal sequences can be used as the “identity” of
a program, and thus can be used to detect any known

and unknown intrusions (anomaly intrusion detection).
Whereas having only the rules for abnormal sequences
only gives us the capability to identify known intrusions
(misuse intrusion detection).

% abn. % abn. in experiment
Traces [FHSL96] A B C D
sscp-1 5.2 41.9 32.2 40.0 33.1
sscp-2 5.2 40.4 30.4 37.6 33.3
sscp-3 5.2 40.4 30.4 37.6 33.3
syslog-r-1 5.1 30.8 21.2 30.3 21.9
syslog-r-2 1.7 27.1 15.6 26.8 16.5
syslog-l-1 4.0 16.7 11.1 17.0 13.0
syslog-l-2 5.3 19.9 15.9 19.8 15.9
decode-1 0.3 4.7 2.1 3.1 2.1
decode-2 0.3 4.4 2.0 2.5 2.2
sm565a 0.6 11.7 8.0 1.1 1.0
sm5x 2.7 17.7 6.5 5.0 3.0sendmail 0 1.0 0.1 0.2 0.3

Table 2: Comparing Detection of Anomalies. The col-
umn [FHSL96] is the percentage of the abnormal se-
quences of the traces. Columns A, B, C, and D are
the percentages of abnormal regions (as measured by
the post-processing scheme) of the traces.sendmail
is the20% normal traces not used in the training data.
Traces in bold were included in the training data, the
other traces were used as testing data only.

We compare the results of the following experiments that
have different distributions of abnormal versus normal
sequences in the training data:

Experiment A: 46% normal and54% abnormal, se-
quence length is 11;

Experiment B: 46% normal and54% abnormal, se-
quence length is 7;

Experiment C: 46% abnormal and54% normal, se-
quence length is 11;

Experiment D: 46% abnormal and54% normal, se-
quence length is 7.

Table 2 shows the results of using the classifiers from
these experiments to analyze the traces. We report here
the percentage of abnormal regions (as measured by our
post-processing scheme) of each trace, and compare our
results with Forrest et al., as reported in [FHSL96].
From Table 2, we can see that in general, intrusion traces
generate much larger percentages of abnormal regions
than the normal traces. We call these measured percent-
ages the “scores” of the traces. In order to establish a
threshold score for identifying intrusion traces, it is de-
sirable that there is a sufficiently large gap between the



scores of the normal sendmail traces and the low-end
scores of the intrusion traces. Comparing experiments
that used the same sequence length, we observe that such
a gap in A,3:4, is larger than the gap in C,0:9; and1:9
in B is larger than0:7 in D. The RIPPER rules from
experiments A and B describe the patterns of the nor-
mal sequences. Here the results show that these rules
can be used to identify the intrusion traces, including
those not seen in the training data, namely, thedecode
traces, thesm565aandsm5xtraces. This confirms our
conjecture that rules for normal patterns can be used for
anomaly detection. The RIPPER rules from experiments
C and D specify the patterns of abnormal sequences in
the intrusion traces included in the training data. The
results indicate that these rules are very capable of de-
tecting the intrusion traces of the “known” types (those
seen in the training data), namely, thesscp-3trace, the
syslog-remote-2trace and thesyslog-local-2trace. But
comparing with the rules from A and B, the rules in C
and D perform poorly on intrusion traces of “unknown”
types. This confirms our conjecture that rules for abnor-
mal patterns are good for misuse intrusion detection, but
may not be as effective in detecting future (“unknown”)
intrusions.

The results from Forrest et al. showed that their method
required a very low threshold in order to correctly detect
the decode andsm565a intrusions. While the results
here show that our approach generated much stronger
“signals” of anomalies from the intrusion traces, it
should be noted that their method used all of the normal
traces but not any of the intrusion traces in training.

2.1.3 Learning to Predict System Calls

Unlike the experiments in Section 2.1.2 which required
abnormal traces in the training data, here we wanted to
study how to compute an anomaly detector given just the
normal traces. We conducted experiments to learn the
(normal) correlation among system calls: thenth system
calls or the middle system calls in (normal) sequences of
lengthn.

The learning tasks were formulated as follows:� Each record hasn� 1 positional attributes,p1, p2,
. . . ,pn�1, each being a system call; plus a class la-
bel, the system call of thenth position or the middle
position� The training data is composed of (normal) se-
quences taken from80% of the normal sendmail
traces

� The testing data is the traces not included in the
training data, namely, the remaining20% of the
normal sendmail traces and all the intrusion traces.

RIPPER outputs rules in the following form:

38 :- p3 = 40, p4 = 4. [meaning: ifp3 is 40
(lstat) andp4 is 4 (write), then the 7th system
call is 38 (stat).]
. . .

5:- true. [meaning: if none of the above, then
the 7th system calls is 5 (open).]

Each of these RIPPER rules has some “confidence” in-
formation: the number of matched examples (records
that conform to the rule) and the number of unmatched
examples (records that are in conflict with the rule) in the
training data. For example, the rule for “38 (stat)” cov-
ers 12 matched examples and 0 unmatched examples.
We measure the confidence value of a rule as the num-
ber of matched examples divided by the sum of matched
and unmatched examples. These rules can be used to an-
alyze a trace by examining each sequence of the trace. If
a violation occurs (the actual system call is not the same
as predicted by the rule), the “score” of the trace is in-
cremented by 100 times the confidence of the violated
rule. For example, if a sequence in the trace hasp3 = 40
andp4 = 4, but p7 = 44 instead of 38, the total score
of the trace is incremented by 100 since the confidence
value of this violated rule is 1. The averaged score (by
the total number of sequences) of the trace is then used
to decide whether an intrusion has occurred.

Table 3 shows the results of the following experiments:

Experiment A: predict the 11th system call;

Experiment B: predict the middle system call in a se-
quence of length 7;

Experiment C: predict the middle system call in a se-
quence of length 11;

Experiment D: predict the 7th system call.

We can see from Table 3 that the RIPPER rules from
experiments A and B are effective because the gap be-
tween the score of normal sendmail and the low-end
scores of intrusion traces, 3.9, and 3.3 respectively, are
large enough. However, the rules from C and D perform
poorly. Since C predicts the middle system call of a se-
quence of length 11 and D predicts the 7th system call,
we reason that the training data (the normal traces) has
no stable patterns for the 6th or 7th position in system
call sequences.



averaged score of violations
Traces Exp. A Exp. B Exp. C Exp. D
sscp-1 24.1 13.5 14.3 24.7
sscp-2 23.5 13.6 13.9 24.4
sscp-3 23.5 13.6 13.9 24.4
syslog-r-1 19.3 11.5 13.9 24.0
syslog-r-2 15.9 8.4 10.9 23.0
syslog-l-1 13.4 6.1 7.2 19.0
syslog-l-2 15.2 8.0 9.0 20.2
decode-1 9.4 3.9 2.4 11.3
decode-2 9.6 4.2 2.8 11.5
sm565a 14.4 8.1 9.4 20.6
sm5x 17.2 8.2 10.1 18.0sendmail 5.7 0.6 1.2 12.6

Table 3: Detecting Anomalies using Predicted System
Calls. Columns A, B, C, and D are the averaged scores
of violations of the traces.sendmail is the20% normal
traces not used in the training data. None of the intrusion
traces was used in training.

2.1.4 Discussion

Our experiments showed that the normal behavior of a
program execution can be established and used to de-
tect its anomalous usage. This confirms the results of
other related work in anomaly detection. The weakness
of the model in [FHSL96] may be that the recorded (rote
learned) normal sequence database may be too specific
as it contains� 1; 500 entries. Here we show that a ma-
chine learning program, RIPPER, was able to generalize
the system call sequence information, from80% of the
normal sequences, to a set of concise and accurate rules
(the rule sets have 200 to 280 rules, and each rule has
2 or 3 attribute tests). We demonstrated that these rules
were able to identify unseen intrusion traces as well as
normal traces.

We need to search for a more predictive classification
model so that the anomaly detector has higher confi-
dence in flagging intrusions. Improvement in accuracy
can come from adding more features, rather than just
the system calls, into the models of program execution.
For example, the directories and the names of the files
touched by a program can be used. In [Fra94], it is re-
ported that as the number of features increases from 1 to
3, the classification error rate of their network intrusion
detection system decreases dramatically. Furthermore,
the error rate stabilizes after the size of the feature set
reaches 4, the optimal size in their experiments. Many
operating systems provide auditing utilities, such as the
BSM audit of Solaris, that can be configured to collect

abundant information (with many features) of the activ-
ities in a host system. From the audit trails, informa-
tion about a process (program) or a user can then be
extracted. The challenge now is to efficiently compute
accurate patterns of programs and users from the audit
data.

A key assumption in using a learning algorithm for
anomaly detection (and to some degree, misuse detec-
tion) is that the training data is nearly “complete” with
regard to all possible “normal” behavior of a program
or user. Otherwise, the learned detection model can not
confidently classify or label an unmatched data as “ab-
normal” since it can just be an unseen “normal” data.
For example, the experiments in Section 2.1.3 used80%
of “normal” system call sequences; whereas the experi-
ments in Section 2.1.2 actually required all “normal” se-
quences in order to pre-label the “abnormal” sequences
to create the training data. During the audit data gath-
ering process, we want to ensure that as much different
normal behavior as possible is captured. We first need
to have a simple and incremental (continuously learn-
ing) summary measure of an audit trail so that we can
update this measure as each new audit trail is processed,
and can stop the audit process when the measure stabi-
lizes. In Section 3, we propose to use the frequent intra-
and inter- audit record patterns as the summary measure
of an audit trail, and describe the algorithms to compute
these patterns.

2.2 Experiments ontcpdump Data

There are two approaches for network intrusion detec-
tion: one is to analyze the audit data on each host of the
network and correlate the evidence from the hosts. The
other is to monitor the network traffic directly using a
packet capturing program such astcpdump[JLM89]. In
this section, we describe how classifiers can be induced
from tcpdumpdata to distinguish network attacks from
normal traffic.

2.2.1 Thetcpdump Data

We obtained a set oftcpdump data, available via
http at “iris.cs.uml.edu:8080/network.html”, that is
part of an Information Exploration Shootout (see
“http://iris.cs.uml.edu:8080”).tcpdumpwas executed on
the gateway that connects the enterprise LAN and the
external networks. It captured the headers (not the user
data) of the network packets that passed by the network



interface of the gateway. Network traffic between the
enterprise LAN and external networks, as well as the
broadcast packets within the LAN were therefore col-
lected. For the purposes of the shootout, filters were
used so thattcpdumponly collected Internet Transmis-
sion Control Protocol (TCP) and Internet User Datagram
Protocol (UDP) packets. The data set consists of 3 runs
of tcpdumpon generated network intrusions1 and one
tcpdumprun on normal network traffic (with no intru-
sions). The output of eachtcpdumprun is in a sepa-
rate file. The traffic volume (number of network connec-
tions) of these runs are about the same. Our experiments
focused on building an anomaly detection model from
the normal dataset.

Sincetcpdumpoutput is not intended specifically for se-
curity purposes, we had to go through multiple iterations
of data pre-processing to extract meaningful features and
measures. We studied TCP/IP and its security related
problems, for example [Ste84, Pax97, ABH+96, Pax98,
Bel89, PV98], for guidelines on the protocols and the
important features that characterize a connection.

2.2.2 Data Pre-processing

We developed a script to scan eachtcpdumpdata file
and extract the “connection” level information about the
network traffic. For each TCP connection, the script pro-
cesses packets between the two ports of the participating
hosts, and:� checks whether 3-way handshake has been properly

followed to establish the connection. The follow-
ing errors are recorded: connection rejected, con-
nection attempted but not established (the initiating
host never receives a SYN acknowledgment), and
unwanted SYN acknowledgment received (no con-
nection request, a SYN packet, was sent first),� monitors each data packet and ACK packet, keeps
a number of counters in order to calculate these
statistics of the connection: resent rate, wrong re-
sent rate, duplicate ACK rate, hole rate, wrong
(data packet) size rate, (data) bytes sent in each di-
rection, percentage of data packet, and percentage
of control packet, and� watches how connection is terminated: normal
(both sides properly send and receive FINs), abort
(one host sends RST to terminate, and all data pack-

1Note that, to this date, the organizers of the shootout have not
provided us with information, i.e., the times, targets, andactions, of
these network intrusions.

ets are properly ACKed), half closed (only one host
sends FIN), and disconnected.

Since UDP is connectionless (no connection state), we
simply treat each packet as a connection.

A connection record, in preparation of data mining, now
has the following fields (features): start time, duration,
participating hosts, ports, the statistics of the connection
(e.g., bytes sent in each direction, resent rate, etc.), flag
(“normal” or one of the recorded connection/termination
errors), and protocol (TCP or UDP). From the ports, we
know whether the connection is to a well-known service,
e.g.,http (port 80), or a user application.

We call the host that initiates the connection, i.e., the
one that sends the first SYN, as the source, and the other
as the destination. Depending on the direction from the
source to the destination, a connection is in one of the
three types:out-going - from the LAN to the exter-
nal networks;in-coming- from the external networks
to the LAN; andinter-LAN - within the LAN. Taking
the topologies of the network into consideration is im-
portant in network intrusion detection. Intuitively, intru-
sions (which come from outside) may first exhibit some
abnormal patterns (e.g., penetration attempts) in thein-
comingconnections, and subsequently in theinter-LAN
(e.g., doing damage to the LAN) and/or theout-going
(e.g., stealing/uploading data) connections. Analyzing
these types of connections and constructing correspond-
ing detection models separately may improve detection
accuracy.

2.2.3 Experiments and Results

For each type (direction) of the connections, we formu-
lated the classification experiments as the following:� Each (connection) record uses the destination ser-

vice (port) as the class label, and all the other con-
nection features as attributes;� The training data is80% of the connections from
the normaltcpdumpdata file, while the test data
includes the remaining20% from the normaltcp-
dumpdata file, and all the connections from the 3
tcpdumpdata files marked as having embedded at-
tacks;� 5-fold cross validation evaluation is reported here.
The process (training and testing) is repeated 5
times, each time using a different80% of the nor-
mal data as the training data (and accordingly the



% misclassification (by traffic type)
Data out-going in-coming inter-LAN
normal 3.91% 4.68% 4%
intrusion1 3.81% 6.76% 22.65%
intrusion2 4.76% 7.47% 8.7%
intrusion3 3.71% 13.7% 7.86%

Table 4: Misclassification Rate on Normal and Intru-
sion Data. Separate classifiers were trained and tested
on connection data of each traffic type. “normal” is the20% data set aside from the training data. No intrusion
data was used for training.

different remaining20% of the normal data as part
of the test data), and the averaged accuracy of the
classifiers from the 5 runs is reported.

We again applied RIPPER to the connection data. The
resulting classifier characterizes the normal patterns of
each service in terms of the connection features. When
using the classifier on the testing data, the percentage of
misclassifications on eachtcpdumpdata set is reported.
Here a misclassification is the situation where the the
classifier predicts a destination service (according to the
connection features) that is different from the actual.
This misclassification rate should be very low for nor-
mal connection data and high for intrusion data. The
intuition behind this classification model is straightfor-
ward: when intrusions take place, the features (charac-
teristics) of connections to certain services, for example,
ftp, are different from the normal traffic patterns (of the
same service).

The results from the first round of experiments, as shown
in Table 4, were not very good: the differences in the
misclassification rates of the normal and intrusion data
were small, except for theinter-LAN traffic of some in-
trusions.

We then redesigned our set of features by adding some
continuous and intensity measures into each connection
record:� Examining all connections in the pastn seconds,

and counting the number of: connection establish-
ment errors (e.g., “connection rejected”), all other
types of errors (e.g., “disconnected”), connections
to designated system services (e.g.,ftp), connec-
tions to user applications, and connections to the
same service as the current connection;� Calculate for the pastn seconds, the per-connection
average duration and data bytes (on both directions)
of all connections, and the same averages of con-

% misclassification (by traffic type)
Data out-going in-coming inter-LAN
normal 0.88% 0.31% 1.43%
intrusion1 2.54% 27.37% 20.48%
intrusion2 3.04% 27.42% 5.63%
intrusion3 2.32% 42.20% 6.80%

Table 5: Using Temporal-Statistical Measures to Im-
prove Classification Accuracy. Here the time interval is
30 seconds.
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nections to the same service.

These additional temporal-statistical features provide
additional information of the network activity from a
continuous perspective, and provide more insight into
anomalies. For example, a low rate of error due to inno-
cent attempts and network glitches in a short time span is
expected, but an excess beyond the (averaged) norm in-
dicates anomalous activity. Table 5 shows the improve-
ment of adding these features. Here, using a time inter-
val of 30 seconds (i.e.,n = 30s), we see that the mis-
classification rates on the intrusion data are much higher
than the normal data, especially for thein-comingtraffic.
The RIPPER rule set (the classifier) has just 9 rules and
25 conditions. For example, one rule says “if the average
number of bytes from source to destination (of the con-
nections to the same service) is 0, and the percentage of
control packets in the current connection is100%, then
the service isauth”.

To understand the effects of the time intervals on the
misclassification rates, we ran the experiments using
various time intervals: 5s, 10s, 30s, 60s, and 90s. The
effects on theout-goingandinter-LAN traffic were very
small. However, as Figure 1 shows, for thein-coming



traffic, the misclassification rates on the intrusion data
increase dramatically as the time interval goes from 5s
to 30s, then stabilizes or tapers off afterwards.

2.2.4 Discussion

We learned some important lessons from the experi-
ments on thetcpdumpdata. First, when the collected
data is not designed specifically for security purposes or
can not be used directly to build a detection model, a
considerable amount of (iterative) data pre-processing is
required. This process fundamentally requires a lot of
domain knowledge, and may not be easily automated.
Second, in general, adding temporal-statistical features
can improve the accuracy of the classification model.

There are also much needed improvements to our current
approach: First, deciding upon the right set of features
is difficult and time consuming. For example, many tri-
als were attempted before we came up with the current
set of features and time intervals. We need useful tools
that can provide insight into the patterns that may be ex-
hibited in the data. Second, we should provide tools that
can help administrative staff understand the nature of the
anomalies.

2.3 Combining Multiple Classifiers

The classifiers described in this section each models a
single aspect of the system behavior. They are what we
call the base (single level) classifiers. Combining ev-
idence from multiple base classifiers that each models
different aspect of the target system is likely to improve
the effectiveness in detecting intrusions. For example, in
addition to the classifier for network traffic (usingtcp-
dumpdata), we can include the classifiers on the com-
mands issued during the (connection) sessions of well-
known services, e.g.ftp, telnetetc. The combined evi-
dence of anomalous traffic patterns and session behavior
leads to a more accurate assertion that the network is
under attack. A priority in our research plan is to study
and experiment with (inductively learned) classification
models that combine evidence from multiple (base) de-
tection models. The general approach in learning such a
meta-detection model can be summarized as follows:� Build base classifiers that each models different as-

pect of the target system;� Formulate the meta learning task: each record in
the training data is a collection of the evidence

(generated at the same time period) from the base
classifiers; each attribute value in a record is 1 or 0,
the prediction (evidence) from a base classifier that
the modeled behavior is “normal” or “abnormal”
(i.e., it fits the model or not).� Apply a learning algorithm to produce the meta
classifier.

The meta detection model is actually a hierarchy of de-
tection models. At the bottom, the base classifiers take
audit data as input and output evidence to the meta clas-
sifier, which in turn outputs the final assertion.

Our research activities in JAM [SPT+97], which focus
on the accuracy and efficiency of meta classifiers, will
contribute significantly to our effort in building meta de-
tection models.

3 Mining Patterns from Audit Data

In order to construct an accurate (effective) base clas-
sifier, we need to gather a sufficient amount of training
data and identify a set of meaningful features. Both of
these tasks require insight into the nature of the audit
data, and can be very difficult without proper tools and
guidelines. In this section we describe some algorithms
that can address these needs. Here we use the term “au-
dit data” to refer to general data streams that have been
properly processed for detection purposes. An example
of such data streams is the connection record data ex-
tracted from the rawtcpdumpoutput.

3.1 Association Rules

The goal of mining association rules is to derive multi-
feature (attribute) correlations from a database table.
A simple yet interesting commercial application of the
association rules algorithm is to determine what items
are often purchased together by customers, and use
that information to arrange store layout. Formally,
given a set of records, where each record is a set
of items, an association rule is an expressionX )Y; confidence; support [SA95]. X and Y are sub-
sets of the items in a record,supportis the percentage
of records that containX + Y , whereasconfidenceissupport(X+Y )support(X) . For example, an association rule from the
shell command history file (which is a stream of com-



mands and their arguments) of a user istrn) rec:humor; [0:3; 0:1];
which indicates that30% of the time when the user in-
vokestrn, he or she is reading the news inrec:humor,
and reading this newsgroup accounts for10% of the ac-
tivities recorded in his or her command history file. Here0:3 is theconfidenceand0:1 is thesupport.
The motivation for applying the association rules algo-
rithm to audit data are:� Audit data can be formatted into a database table

where each row is an audit record and each column
is a field (system feature) of the audit records;� There is evidence that program executions and user
activities exhibit frequent correlations among sys-
tem features. For example, one of the reasons that
“program policies”, which codify the access rights
of privileged programs, are concise and capable to
detect known attacks [KFL94] is that the intended
behavior of a program, e.g.,read andwrite files
from certain directories with specific permissions,
is very consistent. These consistent behaviors can
be captured in association rules;� We can continuously merge the rules from a new
run to the aggregate rule set (of all previous runs).

Our implementation follows the general association
rules algorithm, as described in [Sri96].

3.2 Frequent Episodes

While the association rules algorithm seeks to find intra-
audit record patterns, the frequent episodes algorithm, as
described in [MTV95], can be used to discover inter- au-
dit record patterns. A frequent episode is a set of events
that occur frequently within a time window (of a speci-
fied length). The events must occur (together) in at least
a specified minimum frequency,min fr, sliding time
window. Events in aserial episode must occur in partial
order in time; whereas for aparallel episode there is no
such constraint. ForX andY whereX+Y is a frequent
episode,X ) Y with confidence = frequency(X+Y )frequency(X)
andsupport = frequency(X +Y ) is called a frequent
episode rule. An example frequent serial episode rule
from the log file of a department’s Web site ishome; research) theory; [0:2; 0:05]; [30s]
which indicates that when the home page and the re-
search guide are visited (in that order), in20% of the

cases the theory group’s page is visited subsequently
within the same 30s time window, and this sequence of
visits occurs5% of the total (the 30s) time windows in
the log file (that is, approximately5% of all the records).

We seek to apply the frequent episodes algorithm to
analyze audit trails since there is evidence that the
sequence information in program executions and user
commands can be used to build profiles for anomaly de-
tection [FHSL96, LB97]. Our implementation followed
the description in [MTV95].

3.3 Using the Discovered Patterns

The association rules and frequent episodes can be used
to guide the audit process. We run a program many
times and under different settings. For each new run,
we compute its rule set (that consists of both the asso-
ciation rules and the frequent episodes) from the audit
trail, and update the (existing) aggregate rule sets using
the followingmergeprocess:� For each rule in the new rule set: find a match in the

aggregate rule set. A match is defined as the exact
matches on both the LHS and RHS of the rules,
plus" matches (using ranges), on thesupport (orfrequency) andconfidence values� If a match is found, increment thematch count
of the matched rule in the aggregate rule set.
Otherwise, add the new rule and initialize itsmatch count to be 1.

When the rule set stabilizes (there are no new rules
added), we can stop the data gathering process since we
have produced a near complete set of audit data for the
normal runs. We thenprunethe rule set by eliminating
the rules with lowmatch count, according to a user-
defined threshold on the ratio ofmatch count over the
total number of audit trails. The system builders can
then use the correlation information in this finalpro-
file rule set to select a subset of the relevant features for
the classification tasks. We plan to build a support en-
vironment to integrate the process of user selection of
features, computing a classifier (according to the fea-
ture set), and presenting the performance of the classi-
fier. Such a support system can speed up the iterative
feature selection process, and help ensure the accuracy
of a detection model.

We believe that the discovered patterns from (the ex-
tensively gathered) audit data can be used directly for
anomaly detection. We compute a set of association
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Figure 2: Effects of Window Sizes on the Number of
Frequent Episodes.

rules and frequent episodes from a new audit trail, and
compare it with the establishedprofile rule set. Scoring
functions can be used to evaluate the deviation scores
for: missing rules with highsupport, violation (same
antecedent but different consequent) of rules with highsupport andconfidence, new (unseen) rules, and sig-
nificant changes insupport of rules.

3.3.1 tcpdump Data Revisited

We ran some preliminary experiments using our associ-
ation rules and frequent episodes programs on thetcp-
dumpdata that was used in the experiments described in
Section 2.2.

We wanted to study how the frequent episodes algorithm
can help us determine the time window used in gather-
ing temporal-statistical features. We ran the algorithm
on the “normal”in-comingconnection records (without
the temporal-statistical features). We set the program
to produce two types of output:raw serial and paral-
lel episodes (no rules were generated) and serial episode
rules. Forraw episodes, we usedmin fr = 0:3. And
for serial episode rules, we usedmin fr = 0:1 andmin conf = 0:6 and0:8. We used different time win-
dow sizes (win): 2s, 5s, 10s, 15s, 30s, 45s, 60s, 90s,
120s, 150s, and 200s; and recorded the number of fre-
quent episodes generated on eachwin. In Figure 2 we
see that the number of frequent episodes (raw episodes
or serial episode rules) increases sharply aswin goes
from 2s to 30s, it then gradually stabilizes (note that by
the nature of the frequent episodes algorithm, the num-
ber of episodes can only increase aswin increases). This
phenomenon coincides with the trends in Figure 1. Note
that here we made the particular choice of the parame-

ters (i.e.,min fr, min conf ) only for the purpose of
controlling the maximum size of the episode rule set.
Different settings exhibited the same phenomenon. We
conjecture (and will verify with further experiments on
other data sets) that we can use this technique to ana-
lyze data streams and automatically discover the most
important temporal measure: the time window size, i.e.,
the period of time within which to measure appropriate
statistical features to maximize classifier accuracy. In-
tuitively, the first requirement of a time window size is
that its set of sequence patterns is stable, that is, suffi-
cient patterns are captured and noise is small.

We also ran both the association rules and frequent
episodes programs on all thein-comingconnection data,
and compared the rule sets from the normal data with the
intrusion data. The purpose of this experiment was to de-
termine how these programs can provide insight into the
(possible) patterns of intrusions. The frequent episodes
generated were serial episode rules withwin = 30s,min fr = 0:1 andmin conf = 0:8. The associations
rules were generated usingmin support = 0:3 andmin confidence = 0:9. We manually examined and
compared the rule sets to look for “unique” patterns that
exist in the intrusion data (but not in the normal data).
Here are some results:

intrusion1: the unique serial rules are related to “ftp-
data as the source application”, for example,

src srv = “ftp-data”, src srv = “user-
apps”=) src srv = “ftp-data”; [0.96,
0.11], [30s]

This rule means: when a connection with a user ap-
plication as the source service follows a connection
with ftp-data, 96% of the cases, a connection with
ftp-data follows and falls into the same time win-
dow (30s); and this patterns occur11% of the time.
The unique association rules are related to “desti-
nation service is a user application”, for example,

dst srv = “user-apps”=) duration= 0,
dst to src bytes= 0; [0.9, 0.33]

This rule means: when the destination service of a
connection is a user application,90% of the cases,
the duration and the number of data bytes from the
destination to the source are both 0; and this pattern
occurs33% of the time.

intrusion2: the results are nearly identical tointrusion1 in terms of the unique serial rules and
association rules.

intrusion3: the unique serial rules are related to “auth
as the destination service”, for example,



dst srv = “auth” =) flag = “un-
wantedsyn ack”; [0.82, 0.1], [30s]

and

dst srv = “auth” =) dst srv = “user-
apps”, dst srv = “auth”; [0.82, 0.1],
[30s]

There are a significant number of unique associa-
tion rules in regard to “smtp is the source applica-
tion”. Many of these rules suggest connection error
of smtp, for example,

src srv = “smtp” =) duration= 0, flag
= “unwantedsyn ack”, dst srv = “user-
apps”; [1.0, 0.38]

These rules may provide hints about the intrusions.
For example, the unique (not normal) serial episodes
in intrusion1 and intrusion2 reveal that there are a
large number offtp data transfer activities; whereas
the unique serial episodes inintrusion3 suggest that a
large number of connections to theauth service were
attempted.

4 Architecture Support

The biggest challenge of using data mining approaches
in intrusion detection is that it requires a large amount of
audit data in order to compute the profile rule sets. And
the fact that we may need to compute a detection model
for each resource in a target system makes the data min-
ing task daunting. Moreover, this learning (mining) pro-
cess is an integral and continuous part of an intrusion de-
tection system because the rule sets used by the detection
module may not be static over a long period of time. For
example, as a new version of a system software arrives,
we need to update the “normal” profile rules. Given that
data mining is an expensive process (in time and stor-
age), and real-time detection needs to be lightweight to
be practical, we can’t afford to have a monolithic intru-
sion detection system.

We propose a system architecture, as shown in Figure 3,
that includes two kinds of intelligent agents: the learn-
ing agents and the detection agents. A learning agent,
which may reside in a server machine for its comput-
ing power, is responsible for computing and maintain-
ing the rule sets for programs and users. It produces
both the base detection models and the meta detection

models. The task of a learning agent, to compute ac-
curate models from very large amount of audit data, is
an example of the “scale-up” problem in machine learn-
ing. We expect that our research in agent-based meta-
learning systems [SPT+97] will contribute significantly
to the implementation of the learning agents. Briefly,
we are studying how to partition and dispatch data to a
host of machines to compute classifiers in parallel, and
re-import the remotely learned classifiers and combine
an accurate (final) meta-classifier, a hierarchy of classi-
fiers [CS93].

A detection agent is generic and extensible. It is
equipped with a (learned and periodically updated) rule
set (i.e., a classifier) from the remote learning agent. Its
detection engine “executes” the classifier on the input
audit data, and outputs evidence of intrusions. The main
difference between a base detection agent and the meta
detection agent is: the former uses preprocessed audit
data as input while the later uses the evidence from all
the base detection agents. The base detection agents and
the meta detection agent need not be running on the same
host. For example, in a network environment, a meta
agent can combine reports from (base) detection agents
running on each host, and make the final assertion on the
state of the network.

The main advantages of such a system architecture are:� It is easy to construct an intrusion detection system
as a compositional hierarchy of generic detection
agents.� The detection agents are lightweight since they
can function independently from the heavyweight
learning agents, in time and locale, so long as it is
already equipped with the rule sets.� A detection agent can report new instances of intru-
sions by transmitting the audit records to the learn-
ing agent, which can in turn compute an updated
classifier to detect such intrusions, and dispatch
them to all detection agents. Interestingly, the ca-
pability to derive and disseminate anti-virus codes
faster than the virus can spread is also considered a
key requirement for anti-virus systems [KSSW97].

5 Conclusion and Future Work

In this paper we proposed a systemic framework that
employs data mining techniques for intrusion detection.
This framework consists of classification, association
rules, and frequence episodes programs, that can be used
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to (automatically) construct detection models. The ex-
periments onsendmailsystem call data and networktcp-
dumpdata demonstrated the effectiveness of classifica-
tion models in detecting anomalies. The accuracy of the
detection models depends on sufficient training data and
the right feature set. We suggested that the association
rules and frequent episodes algorithms can be used to
compute the consistent patterns from audit data. These
frequent patterns form an abstract summary of an audit
trail, and therefore can be used to: guide the audit data
gathering process; provide help for feature selection; and
discover patterns of intrusions. Preliminary experiments
of using these algorithms on thetcpdumpdata showed
promising results.

We are in the initial stages of our research, much remains
to be done including the following tasks:� Implement a support environment for system

builders to iteratively drive the integrated process of
pattern discovering, system feature selection, and
construction and evaluation of detection models;� Investigate the methods and benefits of combining
multiple simple detection models. We need to use
multiple audit data streams for experiments;� Implement a prototype agent-based intrusion detec-
tion system. JAM [SPT+97] already provides a
base infrastructure;

� Evaluate our approach using extensive audit data
sets, some of which is presently under construction
at Rome Labs.
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