A Data Mining Framework for Building Intrusion Detection Models *

Wenke Lee
Salvatore J. Stolfo
Kui W. Mok
Computer Science Department, Columbia University
500 West 120th Street, New York, NY 10027
{wenke,sal,mok@cs.columbia.edu

Abstract computer systems.
Intrusion detection techniques can be categorized into
There is often the need to update an installed Intrusion anomaly detectiomnd misuse detectionAnomaly detec-
Detection System (IDS) due to new attack methods or up-tion systems, for example, IDES [14], flag observed ac-
graded computing environments. Since many current IDSstivities that deviate significantly from the established nor-
are constructed by manual encoding of expert knowledge,mal usage profiles as anomalies (i.e., possible intrusions).
changes to IDSs are expensive and slow. In this paper, weMisuse detection systems, for example, IDIOT [9] and
describe a data mining framework for adaptively building STAT [5], use patterns of well-known attacks or weak spots
Intrusion Detection (ID) models. The central idea is to uti- of the system to match and identify known intrusion, pat-
lize auditing programs to extract an extensive set of fea- terns or signatures.
tures that describe each network connection or host ses- While accuracy is the essential requirement of an IDS, its
sion, and apply data mining programs to learn rules that extensibility and adaptability are also critical in today’s net-
accurately capture the behavior of intrusions and normal work computing environment. There are multiple “penetra-
activities. These rules can then be used for misuse detection points” for intrusions to take place in a network system.
tion and anomaly detection. New detection models are in- For example, at the network level carefully crafted “mali-
corporated into an existing IDS through a meta-learning cious” IP packets can crash a victim host; at the host level,
(or co-operative learning) process, which produces a meta vulnerabilities in system software can be exploited to yield
detection model that combines evidence from multiple mod-an illegal root shell. Since activities at different penetration
els. We discuss the strengths of our data mining pro- points are normally recorded in different audit data sources,
grams, namely, classification, meta-learning, association an IDS often needs to be extended to incorporate additional
rules, and frequent episodes. We report our results of ap-modules that specialize on certain components (e.g., hosts,
plying these programs to the extensively gathered networksubnets, etc.) of the network systems. The large traffic vol-
audit data for the 1998 DARPA Intrusion Detection Evalu- ume in security related mailing lists and Web sites suggest
ation Program. that new system security holes and intrusion methods are
continuously being discovered. Therefore it is imperative
that IDSs be updated frequently and timely.
1 Introduction Currently building an effective IDS is an enormous
knowledge engineering task. System builders rely on their
) _ intuition and experience to select the statistical measures for
_ As netvyork-based computer systems play mcreasmglyanomaly detection [13]. Experts first analyze and categorize
vital roles in modern society, they have become the target, i, scenarios and system vulnerabilities, and hand-code
,Of |ntr.u5|ons by our enemies and criminals. In add|t|9n t? the corresponding rules and patterns for misuse detection.
|ntru5|on_prevent|ontechnlqu.es, sugh as usgrguthentlcatlorhecause of the manual and ad hoc nature of the develop-
(e_.g. using passyvords or blometrlc_s), avoiding program- ment process, current IDSs have limited extensibility and
ming errors, an_d |nformat|on protection (€.g., encryption), adaptability. Many IDSs only handle one particular audit
intrusion detection is often used as another wall to protect y,ia source, and their updates are expensive and slow.
*This research is supported in part by grants from DARPA (B206 Some of the recent research and commercial IDSs have
96-1-0311) and NSF (IR1-96-32225 and CDA-96-25374). started to provide built-in mechanisms for customization

and extension. For example, both Bro [18] and NFR [6] 2 A Systematic Framework
filter network traffic streams into a series of events, and ex-

ecute scripts, e.g., Bro policy scripts and NFR's N-Codes, A pasic premise for intrusion detection is that when au-
that contain site-specific event handlers, i.e., intrusion de-git mechanisms are enabled to record system events, dis-
tection and handling rules. The system administration per-tinct evidence of legitimate activities and intrusions will be
sonnel at each installation site must now assume the rolesnanifested in the audit data. Because of the sheer volume
of both security experts and IDS builders because they arepf qudit data, both in the amount of audit records and in
responsible for writing the correct event handling functions. the number of system features (fields of the audit records),
Our first-hand experience with both Bro and NFR show that efficient and intelligent data analysis tools are required to
while these systems provide great flexibility, writing the discover the behavior of system activities.

scripts involves a lot of effort, in addition to learning the Data mining generally refers to the process of extracting
scripting languages. For example, there is no means to “deescriptive models from large stores of data [4]. The re-
bug” the scripts. These systems also handle a fixed set ofent rapid development in data mining has made available a
network traffic event types. On a few occasions we were yide variety of algorithms, drawn from the fields of statis-
forced to make changes to the source code of the originakjcs, pattern recognition, machine learning, and databases.
IDS to handle new event types. Several types of algorithms are particularly useful for min-

. . ing audit data:
Our research aims to develop a more systematic and au- 9

tomated approach in building IDSs. We are developing @ Classification: maps a data item into one of several pre-

set of tools that can be applied to a variety of audit data

sources to generate intrusion detection models. We take a
data-centric point of view and consider intrusion detection

as a data analysis process. Anomaly detection is about find-
ing the normal usage patterns from the audit data, whereas
misuse detection is about encoding and matching the in-
trusion patterns using the audit data. The central theme of
our approach is to apply data mining programs to the exten-
sively gathered audit data to compute models that accurately

defined categories. These algorithms normally output
“classifiers”, for example, in the form of decision trees
or rules. An ideal application in intrusion detection
will be to gather sufficient “normal” and “abnormal”
audit data for a user or a program, then apply a clas-
sification algorithm to learn a classifier that can label
or predict new unseen audit data as belonging to the
normal class or the abnormal class;

capture thectual behavio(i.e., patterns) of intrusions and Link analysis: determines relations between fields in the

normal activities. This automatic approach eliminates the
need to manually analyze and encode intrusion patterns, as
well as the guesswork in selecting statistical measures for
normal usage profiles. More importantly, the same data
mining tools can be applied to multiple streams of evidence,
each from a detection module that specializes on a specific
type(s) of intrusion or a specific component (e.g., a mission-

database records. Correlations of system features in
audit data, for example, the correlation betweem-
mandandargumentin the shell command history data
of a user, can serve as the basis for constructing normal
usage profiles. A programmer, for example, may have
“emacs” highly associated with “C” files;

critical host) of the network system, to learn the combined Sequence analysismodels sequential patterns. These al-

detection model that considers all the available evidence.
Thus our framework facilitates the construction of adaptive
IDSs.

The rest of the paper is organized as follows. Section 2
outlines the main components of our framework. Section 3
briefly describes several data mining programs, and dis-
cusses how they can be applied to discover frequent intru-
sion and normal activity patterns, which are the basis for
building misuse detection models and user anomaly detec-

gorithms can discover what time-based sequence of
audit events are frequently occurring together. These
frequent event patterns provide guidelines for incorpo-
rating temporal statistical measures into intrusion de-
tection models. For example, patterns from audit data
containing network-based denial-of-service (DOS) at-
tacks suggest that several per-host and per-service
measures should be included.

We are developing a framework, first proposed in [11],

tion models. Section 4 describes how to construct tempo-of applying data mining techniques to build intrusion de-
ral and statistical features using the frequent patterns minedection models. This framework consists of programs for
from audit data. Section 5 reports the results of our ex- learning classifiers and meta-classification [2], association
periments on building intrusion detection models using the rules [1] for link analysis, frequent episodes [16] for se-
audit data from the DARPA evaluation program. Section 6 quence analysis, and a support environment that enables
discusses related research projects. Section 7 outlines ousystem builders to interactively and iteratively drive the pro-

future research plans.

cess of constructing and evaluating detection models. The

end product are concise and intuitive rules that can detect'not found” errors, and “Jump to” instructions, etc. RIP-
intrusions, and can be easily inspected and edited by secuPER [3], a classification rule learning program, generates
rity experts when needed. rules for classifying the telnet connections are displayed in
In our approach, the learned rules replace the manuallyTable 2.
encoded intrusion patterns and profiles, and system features Here we see that RIPPER indeed selects the unique fea-
and measures are selected by considering the statistical pature values in identifying the intrusions. These rules can be
terns computed from the audit data. Meta-learning is usedfirst inspected and edited by security experts, and then be
to learn the correlation of intrusion evidence from multiple incorporated into misuse detection systems.
detection models, and produce a combined detection mod- The accuracy of a classification model depends directly
els. on the set of features provided in the training data. For ex-
Itis very important to point out that our framework does ample, if the featuredot, compromised androot_shell
not eliminate the need to pre-process and analyze raw auditvere removed from the records in Table 1, RIPPER would
data, e.gtcpdumg7] andBSM[22] output. Infact, tobuild not be able to produce accurate rules to identify buffer
intrusion detection models for network systems, our dataoverflow connections. In [11] we showed that due to the
mining programs use pre-processed audit data where eackemporal nature of network events, especially certain in-
record corresponds to a high level event, e.g., a networktrusions such as probing (e.g., port-scan, ping-sweep, etc.)
connection or host session. Each record normally includesand denial-of-service (e.g., ping-of-death, teardrop, etc.),
an extensive set of features that describe the characteristicadding per-host and per-service temporal statistics resulted
of the event, for example, the duration of a connection, the in significant improvement in the accuracy of the classifica-
number of bytes transfered, etc. tion models. Thus, selecting the right set of system features
While analyzing and summarizing raw audit data is an is a critical step when formulating the classification tasks.
essential task for an IDS, we argue that generic utilities Our strategy is to first mine the frequent sequential patterns
should first be developed by network and operating systemfrom the network audit data, and then use these patterns as
experts, and made available to all IDSs as the lowest levelguidelines to select and construct temporal statistical fea-
building blocks. Bro and NFR can be regarded as examplegures. Section 3.3 discusses this process in greater detail.
of such robust and free utilities, as they both perform IP
packet filtering and reassembling, and allow event handlers o
to output summarized connection records. Our framework3-1-1 Meta-Classification
assumes such building blocks are available when constructrpqre are several important reasons for combining multi-

ing IDSs. ple detection models. First, in order to avoid becoming a

performance bottleneck and an easy target of “subversion”,
3 Mining Audit Data an IDS should consist of multiple cooperative lightweight
subsystems that each monitor a separate part (e.g., access
point) of the entire network environment. For example, an
. : IDS that inspects the full data contents of each IP packet and
and illustrate how to apply these algorithms to generate de-)

keeps track of all opened connections may run out of mem-

tection models from audit data. .Here audit data _refers to ory (i.e., buffers) during a DOS attack (e.g., SYN flood) and
pre-processed timestamped audit records, each with a num- ; . .
ber of features (i.c., fields). cease to func_non. On the other hand, a more lightweight
IDS that only inspects the header of each IP packet can de-
o tect only those intrusions that are targeted to the network
3.1 Classification protocols, and not those that try to exploit the hosts (e.g.,
guess password, buffer overflow, etc.). A solution is to
Intrusion detection can be thought of as a classification have one relatively lightweight system on the gateway that
problem: we wish to classify each audit record into one of checks only the packet headers, and several host-based sys-
a discrete set of possible categories, normal or a particulatems that monitor the activities on the mission-critical hosts.
kind of intrusion. A “global” detection system can then combine the evidence
Given a set of records, where one of the features is thefrom these subsystems and take appropriate actions.
class label (i.e., the concept), classification algorithms can We believe that the best way to make intrusion detection
compute a model that uses the most discriminating featuremodels adaptive is by combining existing models with new
values to describe each concept. For example, consider thenodels that are trained on new intrusion data or new nor-
telnet connection records shown in Table 1. Hérg,is the mal data (e.g., audit data from a new network component),
count of access to system directories, creation and executioinstead of restarting the entire model building process using
of programs, etccompromised is the count of file/path the aggregate of the archived audit data and new data.

In this section we describe our data mining algorithms,

label service flag hot failetbgins compromised roathell su duration
normal telnet SF 0 0 0 0 0 10.2
normal telnet SF 0 0 0 3 1 2.1

guess telnet SF O 6 0 0 0 26.2
normal telnet SF 0 0 0 0 0 126.2
overflow telnet SF 3 0 2 1 0 925
normal telnet SF 0 0 0 0 0 2.1

guess telnet SF O 5 0 0 0 13.9
overflow telnet SF 3 0 2 1 0 925
normal telnet SF 0 0 0 0 0 1248

Table 1. Telnet Records
RIPPER rule Meaning

guess :- failedogins >= 5.

If number of failed logins is greater than 5, then this telnet G
nection is “guess”, a guessing password attack.

overflow :- hot = 3, compromised = 2, If the number of hot indicators is 3, the number of compromi

rootshell = 1.

conditions is 2, and a root shell is obtained, then this telnet ¢

nection is a buffer overflow attack.

sed
on-

normal :- true.

If none of the above, then this connection is “normal”.

Table 2. Example RIPPER Rules from Telnet Records

We use Meta-learning [2] as a mechanism to induc-
tively learn the correlation of predictions by a number of
base detection models (i.e., classifiers). The resulting meta-
classifier thus combines the detection power of all the base
detection models. This approach has been extensively stud-
ied [21] and empirically evaluated in a related domain of
fraud detection and has been shown to be an effective and
scalable approach.

3.2 Association Rules

There is empirical evidence that program executions and
user activities exhibit frequent correlations among system
features. For example, certain privileged programs only ac-
cess certain system files in specific directories [8], program-
mers edit and compile C files frequently, etc. These consis-
tent behavior patterns should be included in normal usage
profiles.

The goal of mining association rules is to derive multi-
feature (attribute) correlations from a database table. Given

time hostname command argl arg?2
am pascal mkdir dirl
am pascal cd dirl
am pascal Vi tex
am pascal tex Vi
am pascal mail fredd
am pascal subject progress
am pascal Vi tex
am pascal Vi tex
am pascal mail williamf
am pascal subject progress
am pascal Vi tex
am pascal latex tex
am pascal dvips dvi -0
am pascal logout

Table 3. Shell Command Records

a set of records, where each record is a set of items,name extensions, remove the (input) contents of mail bodies
support(X) is defined as the percentage of records that and files, and use “am” to represent all the morning times-
contain item setX. An association rule is an expression tamps. Not all associations are relevant in analyzing pro-
X — Y,cs] [1]. Here X andY are item sets, and gram or user behavior (for examplepstname = pascal
XNY =10,s = support(X UY) is the support of the _, 4rg1 = tex).

rule, andc = % is the confidence. We utilized the “schema” level information about the au-
Table 3 shows the shell input commands during one tel- dit records to direct the pattern mining process. Observe

net session by a secretary. Here we keep only the file-that certain features are essential in describing the data,

while others provide only “auxiliary information”. For ex- ously described. Then it generates the frequent serial pat-

ample, in shell command data, since the combination of theterns from these associations. Thus, our approach combines

exacttime andcommand uniquely identifies each record, the associations among features and the sequential patterns

command is an essential feature; likewise, in network con- among the records into a single rule.

nection data, the combination of the features timestamp, Another interesting schema-level fact about audit

source and destination hosts, source port, and service (desecords is that some essential features can beetheences

tination port) uniquely identifies a connection record. Thus, of other features. These reference features normally carry

they can be the essential features. We argue that the “relinformation about some “subject”, and other features de-

evant” association rules should describe patterns related tescribe the “actions” that refer to the same “subject”. For

the essential features. example, if we want to study the sequential patterns of con-
We call these essential featuresésiis features when nections to the same destination host, tHethost is the

they are used as a form of item constraint. We restrict the“subject” andservice is the action. In this case, we can

association rules to only output rules that include axis at- designatelst_host as thereferenceeature. When forming

tribute values. In practice, we need not designate all essenan episode, our program tests the condition that, within the

tial features as the axis features. For example, some netepisode’s minimal occurrences, the event records covered

work analysis tasks require statistics about various networkby its constituent item sets have the same reference feature

services while others may require the patterns related to thevalue.

hosts. We can usserviceas the axis feature to compute

the a_lssociation rules tha_lt describe the patterns related to thg Feature Construction

services of the connections. In the case of shell command

records, we useommand as the axis feature. . .
We use the mined frequent episodes from network con-

Table 4 shows some example association rules from thenection records as guidelines to construct temporal statisti-
shell command data in Table 3. Each of these association 9 P

. . . . cal features for building classification models.
rules conveys information about the user’s behavior. The Raw tepdumpoutout are first summarized into network
rules mined from each telnet/login session (of the same P poutp

user) can be merged into an aggregate rule set to form theconnectlon records using pre-processing programs, where

; g . : . each record has a set of “intrinsic” features. For example,
user’s normal profile. Section 5.3 details our experiments :)
of using association rules for anomaly detection. the o!ura.tlon, service, src_host anddst_host (source and
destination hosts)src_port (source port),src_bytes and
dst_bytes (number of data bytes), flag indicating normal
or error status according to the protocols, etc., are intrinsic
features of a single connection. Table 5 shows examples of
There is often the need to study the frequent sequentialconnection records. Note that these “intrinsic” features are
patterns of network events in order to understand the natureg, general network analysis purposes, and not specific to
of many attacks. We use frequent episodes to represent théstrusion detection.
sequential audit record patterns. We apply the frequent episodes program to both nor-
Given a set of timestamped event records, where eachma| connection data and intrusion data, and compare the
record is a set of items, an interval, -] is the sequence resulting patterns to find the “intrusion only” patterns. The
of event records that starts from timestampand ends at details of the pattern comparison algorithm is described in
t2. The width of the interval is defined as—¢,. Let X be [12]. Briefly, since the number of patterns may be very large
a set of items, an interval is a minimal occurrenceXoff and there are rarely exactly matched patterns from two data
it containsX and none of its proper sub-intervals contains sets; this heuristic algorithm considers two episodes related
X. Definesupport(X) as the ratio between the number of o two different sets of axis features as more different, and
minimum occurrences that Conta]fl and the tOtal number Outputs (the user-specified) top percentage of the most “in_
of event records. A frequent episode rule is the expressionyysion only” patterns.
X,Y — Z,[c,s,w] [15]. HereX,Y andZ are item sets, As an example, consider the syn flood attack records
and they together form an episode= support(XUY UZ) shown in Table 5. Here the attacker used many spoofed

3.3 Frequent Episodes

is the support of the rule, and= %W is the source addresses to send a lot of SO connections (i.e., only
confidence. The width of each of the occurrences must bethe first SYN packet is sent) to a port (e fgttp) of the vic-

less thanw. tim host in a very short time span (e.g., all in timestamp
We introduced several extentions to the original frequent 1.1). Table 6 shows the top intrusion only pattern, pro-

episodes algorithm. Our extended algorithm computes fre-duced usingervice as the axis feature antbt_host as the

guent sequential patterns in two phases. First, it finds thereference feature.

frequent associations using the axis features(s) as previ- Each of these intrusion patterns is used as a guideline

Association rule Meaning

command = vi — time = am, When using vito edita file, the user is always (i.e. 100% of the
hostname = pascal, argl = tex, time) editing atexfile, in the morning, and at hogiascaj and
[1.0,0.28] 28% of the command data has this pattern.

command = subject — time = am, The subject of the user’'s email is always ((i.e. 100% of the time)
hostname = pascal, argl = progress, about “progress”, in the morning, and at hpstscal and 11%
[1.0,0.11] of the command data has this pattern.

Table 4. Example Association Rules from Shell Command Data

timestamp duration service shost dsthost srcbytes dstbytes flag
1.1 0 http spoofed victim 0 0 SO0
1.1 0 http spoofe@ victim 0 0 S0
1.1 0 http spoofed® victim 0 0 S0
1.1 0 http spoofed victim 0 0 SO
1.1 0 http spoofeds victim 0 0 SO
1.1 0 http spoofed victim 0 0 SO
1.1 0 http spoofed victim 0 0 SO0
10.1 2 ftp A B 200 300 SF
12.3 1 smtp B D 250 300 SF
134 60 telnet A D 200 12100 SF
13.7 1 smtp B C 200 300 SF
15.2 1 http D A 200 0 REJ

Table 5. Network Connection Records

for adding additional features into the connection records This “syn flood” pattern results in the following addi-
to build better classification models. We use the follow- tional features: a count of connections to the sariehost
ing automatic procedure for parsing a frequent episode andn the past 2 seconds, and among these connections, a per-
constructing features: centage of those that have the samevice, and percentage
of those that have the “SQflag.

o Assumerly (e.g.,dst_host) is used as the reference An open problem here is how to decide the right time

feature, and the width of the episodedsseconds. window valuew. We mine sequential patterns using differ-
entw values, for example, from 0.1 to 20 with an increment
of 1, and plot the number of patterns generated at each run.
Our experience show that this plot tends to stabilize after
the initial sharp jump. We call the smallestin the stable
regionwyp. In [11], we reported experiments of using dif-
ferentw values to calculate temporal statistical features for
— Let Fy be service, src.dst or dst_host other classification models. Our results showed the plot of accu-

than Fy. If the sameF; value (e.g., “http”) is racy of the classifier also stabilizes after> w, and tend to

in all the item sets of the episode, add a percent- taper off. Intuitively, a requirement for a good window size

e Add the following features that examine only the con-
nections in the pastv seconds that share the same
value inFj as the current feature:

— A count of these connections;

age of connections that share the safievalue s that its set of sequential patterns is stable, that is, suffi-
as the current connection; otherwise, add a per- cient patterns are captured and noise is small. We therefore
centage of different values df; . usew, for adding temporal statistical features.

— LetV; be avalue (e.g., “S0”) of a featufé (e.g., In order to construct the appropriate features to detect

flag) other thanF, and F;. If V4 is in all the an intrusion, we need to select the right axis and reference
item sets of the episode, add a percentage of con-features to generate the most distinguishing and useful in-

nections that have the sah®; otherwise, iff5 trusion patterns. This could be a bottleneck in building ef-
is a numerical feature, add an average of Fhe fective models since it requires empirical evaluation. We
values. have implemented a feature construction system, described

Frequent episode Meaning
(service = hitp, flag = S0, dst_host = 93% of the time, after twdhttp connections withS0 flag are
victim), (service = http, flag = S0, made to hostictim, within 2 seconds from the first of these twp,

dst_host = wictim) — (service = the third similar connection is made, and this pattern occurs in
hitp, flag = SO, dst_host = wvictim) 3% of the data
[0.93,0.03, 2]

Table 6. Example Intrusion Pattern

in [12], to support the iterative procedure of pattern min- by a local unprivileged user, for example, various of
ing and comparison, feature construction from patterns, and buffer overflow attacks,

model building and evaluation. In each iteration, we choose
a different data mining strategy regarding the choices of axis
and reference features. These choices are limited among

the “essential” features (see Section 3.2), thakdsypice, In addition, there were anomalous user behavior such as

dst_host, src.dst, or src_port. Since intrusions are gen- «3 manager becomes (i.e., behaves like) a system adminis-
erally targeted to some victim host(s) in the network, the {rator”.

system starts withervice anddst_host.

e PROBING, surveillance and probing, for example,
port-scan, ping-sweep, etc.

5.1.1 Data Pre-processing

5 Experiments L :
We used Bro as the packet filtering and reassembling en-

gine. We extended Bro to handle ICMP packets, and made
changes to its packet fragment inspection modules since
it crashed when processing data that contains teardrop or
ping-of-death attacks.

We implemented a Bro “connection finished” event han-
er to output a summarized record for each connection.
ach connection record includes these “intrinsic” features:
its time, duration, service, src_host, dstpost, src_port,
wrong_fragment (fragmentation error, e.g., fragment size
is not multiple of 8 bytes, or the offsets are overlapped, etc.),
?lag (how the connection is established and terminated).

We used Bro event handlers to examine the telnet ses-
sions, and extract the shell commands of the users. We fur-
ther pre-processed the shell commands by replacing times-
5.1 The DARPA data tamps with am, pm, and nt (for night), and eliminated the

input (i.e., contents) of edit and sendmail commands, and

We were provided with about 4 gigabytes of compressedkept only the filename extensions. Table 3 shows exam-
tcpdumpdata of 7 weeks of network traffic. This data can ples of the processed command data. These shell command
be processed into about 5 million of connection records records were used for user anomaly detection, to be dis-
of about 100 bytes each. The data contains content (i.e.cussed in Section 5.3.
the data portion) of every packet transmitted between hosts
inside and outside a simulated military base. BSM audit 52 Misuse Detection
data from one UNIX Solaris host for some network sessions

were also provided. The training data from DARPA includes “list files” that

Four main categories of attacks were simulated, they areidentify the timestamp, source host and port, destination
host and port, and the name of each attack. We used this
information to select intrusion data to perform pattern min-
ing and feature construction, and to label each connection
e R2L, unauthorized access from a remote machine, for'ecord with “normal” or an attack type to create training

example, guessing password, data for building classification models.

Since the amount of audit data is huge, for example,

e U2R, unauthorized access to local superuser privilegessome days have several millions of connection records due

We patrticipated in the DARPA Intrusion Detection Eval-
uation Program, prepared and managed by MIT Lincoln
Labs. The objective of this study was to survey and eval-
uate the state of the art in research in intrusion detection.
A standard set of extensively gathered audit data, which in- dl
cludes a wide variety of intrusions simulated in a military E
network environment, is provided by DARPA. Each partici-
pating site was required to build intrusion detection models
or tweak their existing system parameters using the training
data, and send the results (i.e., detected intrusions) on th
test data back to DARPA for performance evaluation. We
report our experience here.

e DOS, denial-of-service, for example, ping-of-death,
teardrop, smurf, syn flood, etc.,

to the nasty DOS attacks, we did not aggregate all the con-are embedded in the data portions of the packets and nor-
nection records into a single training data set. Instead, wemally involve only a single connection. Therefore, it is un-
extracted all the connection records that fall within a sur- likely that they can have any unique frequent traffic patterns.
rounding time window of plus and minus 5 minutes of the In other words, our automatic feature construction process
whole duration of each attack to create a data set for each atfailed to produce any features for these attacks.

tack type. We also randomly extracted sequences of normal After studying the outcome of this mining process, we

connections records to create the normal data set. focussed our attention to the content of the connections. In
the Bro event handlers, we added functions that inspect data
521 Manual and Automatic Feature Construction exchanges of interactive TCP connections (e.g., telnet, ftp,

smtp, etc.). These functions assign values to a set of “con-
Following the feature construction approach described intent” features to indicate whether the data contents suggest
Section 4, for each attack type, e.g., syn flood, port-scan,suspicious behavior. These features are: number of failed
etc., we performed pattern mining and comparison using |ogins, successfully logged in or not, whether logged in as
its intrusion data set and the normal data set. We Con-root, whether a root shell is obtained, whether a su com-
structed appropriate features according to the intrusion onlymand is attempted and succeeded, number of access to ac-
patterns. Here we summarize the temporal and statisticakess control files (e.g., “/etc/passwd”, “.rhosts”), number of
features automatically constructed by our system: compromised states on the destination host (e.g., file/path
i “not found” errors, and “Jump to” instructions, etc.), num-

e The “same hostfeature that examine only the connec- ey of hot indicators, (e.g., access to system directories, cre-
tions in the past 2 seconds that have the same destinaagion and execution of programs, etc.), and number of out-
tion host as the current connection: bound connections duringfdp session. Our approach here

is to include an extensive set of indicators, and then let clas-
sification programs decide which minimal set of discrimi-
nating features should be used to identify intrusions.

— the count of such connections, the percentage of
connections that have the same service as the cur
rent one, the percentage of different services, the
percentage of the SO flag, and the percentage of
the REJ (i.e., rejected connection) flag; 5.2.2 Detection Models

« The “same service” features that examine only the con- It is evident that different categories of intrusions require
nections in the past 2 seconds that have the same Ser(_Jlif'ferent sets of constructed features in order to be detected.

vice as the current connection: We therefore built classification models using different fea-
ture sets:

— the count of such connections, the percentage of _ _ _
different destination hosts, the percentage of the ® The “traffic” model: each connection record contains

S0 flag, and the percentage of the REJ flag. the “intrinsic” and the “traffic” features. Table 7 shows
some example labeled connection records. The resul-
We call these the (time-based) “traffic” features for con- tant RIPPER classifier detects the DOS and PROBING
nection records. There are several “slow” PROBING at- attacks. Table 8 shows some example RIPPER rules.

tacks that scan the hosts (or ports) using a much larger time
interval than 2 seconds, for example, one in every minute.
As a result, these attacks did not produce intrusion only pat- - e
terns with the time window of 2 seconds. We sorted these I';]: felatulraesb;rﬁ(gresttjltint RIPPER classifiers detect
connection records by the destination hosts, and applied the € slow attacks.

same pattern mining and feature construction process. In o The “content” model: each connection record contains
stead of using a time window of 2 seconds, we now used a the “intrinsic” and the “content” features. Table 1

e The host-based “traffic” model: each connection
record contains the “intrinsic” and the host-based “traf-

“connection” window of 100 connections, and constructed shows some example labeled connection records. The
a mirror set of *host-based traffic” features as the (time- resultant RIPPER classifier detects the R2L and U2R
based) “traffic” features. attacks. Table 2 shows some example RIPPER rules.

We discovered that unlike most of the DOS and PROB-
ING attacks, the R2L and U2R attacks don’t have any “in- These classification models each specialize to a certain
trusion only” frequent patterns. This is because most of thetype of intrusion. We then constructed a meta-level clas-
DOS and PROBING attacks involve sending a lot of con- sifier to combine these detection models. Each meta-level
nections to some host(s) in a very short period of time, andtraining record consists of four features, the three predic-
therefore can have frequent sequential patterns that are diftions each from one of the base models, plus the true class
ferent from the normal traffic. The R2L and U2R attacks label (i.e., “normal” and an attack type). RIPPER was then

label service flag hostount srvcount hostREJI% hostdiff _srv.% duration

normal ecti SF 1 1 0 1 0

smurf ecti SF 350 350 0 0 0

satan user-level REJ 231 1 85% 89% 0

normal http SF 1 0 0 1 3

Table 7. Example “Traffic” Connection Records

RIPPER rule Meaning
smurf :- service=ecr, hostcount > 5, If the service is icmp echo request, and for the past 2 secands,

hostsrv_count> 5.

the number of connections that have the same destination h

DSt as

the current one is at least 5, and the number of connections that

have the same service as the current one is at least 5, then this is
a smurf attack (a DOS attack).
satan :- hosREJ1% > 83%, hostdiff_srv.% If for the connections in the past 2 seconds that have same the
> 87%. destination host as the current connection, the percentage of re-

jected connections are at least 83%, and the percentage of differ-
ent services is at least 87%, then this is a satan attack (a PROB-
ING attack).

Table 8. Example RIPPER Rules for DOS and PROBING attacks

applied to learn the rules that combine the evidence from point out that not all features in the connection records were
the “traffic”, host-based “traffic”, and “content” classifiers selected by RIPPER. This is because RIPPER, like most
to make a (final) prediction on a connection. The result- classification algorithms, has a built-in “feature selection”
ing meta-level rules basically use the predictions from the process to select the most discriminating and generalizable
“content” model to detect R2L and U2R attacks, and the features according to their statistical significance and per-
combination of “traffic” and host-based “traffic” models to formance (e.g., in a hold-out test dataset that simulates the
detect the DOS and (fast and slow) PROBING attacks. That“unseen/future” data). Because of the large amount of audit
is, the meta-classifier predicts a connection as an attack oflata, a human expert is not able to manually gather and test
R2L or U2R whenever the “content” model does so; and an various statistics, and thus tend to do a poor job in select-
attack of DOS or PROBING whenever the “traffic” model ing the features. As a result, hand crafted “signature” rules
does so, or whenever the “traffic’ model predicts “normal” tend to be very specific to a small intrusion data set. Al-
but the host-based model predicts a PROBING attack. ternative classification algorithms that compute underlying
probability distributions may indeed require all features be

Model # of features # ofrules # of featurés evaluated in their resultant models. A crucial issue here is
in records in rules the tradeoff between model accuracy and model cost. The
content 22 55 11 RIPPER output indicates that some features are irrelevant
traffic 20 26 49 and hence we need not compute these at run-time, thus re-
host traffic 14 38 15 ducing the cost of detection. This is the subject matter of

our ongoing research.
Table 9. Model Complexities

)) 5.2.3 Results
Table 9 summarizes the complexity of the base models

in terms of the number of features in a connection record, We report the performance of our detection models as eval-
the number of RIPPER rules produced, and the number ofuated by MIT Lincoln Labs. We trained our intrusion detec-

distinct features actually used in the rules. The numbers intion models, i.e., the base models and the meta-level clas-
bold, for example9, indicate the number of automatically sifier, using the 7 weeks of labeled data, and used them to
constructed temporal and statistical features being used irmake predictions on the 2 weeks of unlabeled test data (i.e.,
the RIPPER rules. We see that for both the “traffic” and we were not told which connection is an attack). The test

host-based “traffic” models, our feature construction pro- data contains a total of 38 attack types, with 14 types in test
cess contribute the majority of the features. We should data only (i.e., our models were not trained with instances

70 T T T 100
90 T
60 - - - 4 3 & = g b
3 B o] d 80
50 q 70
2 2 60
& 40 &
5 5§ s0
g , 3
8 30 Columbia <— - jJ)
© rou —+- o 40}
a roug - a
roup3 x
20k] 30} Co%umbiz <~ A
roupl +-
roup? o
20 rouE X
10
10
0 065 ‘1 0‘15 0.2 0 065 ‘1 OiS 0.2
’ False A?érm Rate ’ ' ' False A?é\rm Rate ' ’
(a) DOS (b) PROBING
80 T T T 70

70 -

60f,

50 |- | c

; ro
40 L Columbia

223

o

m
SSNES
PO
Detection Rate

Detection Rate

a]
o
ni]

roup

i Columbia <— 4
30 ¢ o z =

20y

10 i/

0.05 False A?é%m Rate 0.15 02 0.05 False A?é\%m Rate
(c) U2R and R2L (d) Overall
Figure 1. ROC Curves on Detection Rates and False Alarm Rates
of these attack types). models. We can see from the figure that our detection

.) model has the best overall performance, and in all but one

Figure 1 shows the ROC curves of the detection modelsattack category, our model is one of the best two. However,
by attack categories as We_II ason all intrusions. In each ofj; is also clear that all models performed very poorly on
these ROC plots, the x-axis is the false alarm rate, calcu-Rp|_ attacks. For all intrusions, an overall detection rate

lated as the percentage of normal connections classified agf pelow 70% is hardly satisfactory in a mission critical
an intrusion; the y-axis is the detection rate, calculated asgpyironment.

the percentage of intrusions detected. A data point in the
upper left corner corresponds to optimal performance, i.e.,

high detection rate with low false alarm rate. We compare Category | Old | New

here our models with other participants (denoted as Group DOS 799 24.3

1 through 3) in the DARPA evaluation program. (The PROBING | 97.0! 96.7

tested systems produced binary output, hence, the ROC’s U2R 75.0| 81.8

are not continuous. These plots are duplicated from the R2L 60.0! 5.9
presentation slides of a report given by Lincoln Labs in a Overall 8021 37.7

DARPA Pl meeting. The slides can be viewed on line via
http://www.cs.columbia.edusal/JAM/PROJECT/MIT/mit- Table 10. Comparing Detection Rates (in %)

index.html). These participating groups used knowledge on Old and New Attacks
engineering approaches to build their intrusion detection

10

Although our models were intended for misuse detec- most people. A user’s actions during a login session needs
tion, we had hoped that the features we constructed wouldto be studied as a whole to determine whether he or she is
be general enough so that the models can detect new varibehaving normally. Our initial exploratory approach is to
ations of the known intrusions. Table 10 compares the de-mine the frequent patterns from user command data, and
tection rates of old intrusions and new intrusions. Here new merge or add the patterns into an aggregate set to form the
intrusions refer to those that did not have corresponding in-normal usage profile of a user. A new pattern can be merged
stances in the training data. We see that our models werawith an old pattern if they have the same left-hand-sides
able to detect a large percentage of new PROBING and U2Rand right-hand-sides, their support values are withiia
attacks, but not as effective for new DOS and R2L attacks. of each other, and their confidence values are also within
5% of each other.

To analyze a user login session, we mine the frequent
patterns from the sequence of commands during this ses-
PROBING attacks have relatively limited variance because sion. This new pattern set is compared with the profile pat-
they all involve making connections to a large number of tern set and aimilarity score is assigned. Assume that the
hosts or ports in a given time frame. Likewise, the outcome new set has: patterns and among them, there arepat-
of all U2R attacks is that a root shell is obtained without terns that have “matches” (i.e., rules that they can be merged
legitimate means, e.g., login as root, su to root, etc. Thus,with) in the profile pattern set, then the similarity score is
for these two categories of attacks, given some representasimply 2. Obviously, a higher similarity score means a
tive instances in the training data, our data mining systemhigher likelihood that the user’s behavior agrees with his or
was able to construct features that capture their general beher historical profile.
havior patterns. As a result, our detection models can detect

5.2.4 Discussion

a high percentage of old and new PROBING and U2R at- User Normal Activities

tacks. On the other hand, DOS and R2L have a wide variety | Sysadm logs in as root, cats the pass-
of behavior because they exploit the weaknesses of a large word file, and runs commands
number of different network or system services. The fea- such as top. _

tures constructed based on the available attack instances are | Programmerl, writes public domain C code,
very specialized to the known attack types. Our detection use a vi editor, compiles the C
models therefore missed a large number of new DOS and code, reads_and sends mail, and
R2L attacks. executes unix commands.

The results here are not entirely surprising since our programmer2 a similar user profile, but works
models aremisusedetection models. We need to use n gfternoons and evenings.
anomaly detection models on network traffic or system pro- secretary edits latex files, runs latex, reads
grams to guard against the new and diversified attacks. mail, and sends mail.

Anomaly detection is much more challenging than misuse managerl reads and sends mail
detection. For example, we need to first decide whether manager2 reads mail.

we should build normal profile for each network service or
a group of services, and for each host or a groups of hosts.
The feature construction process will likely to be more com-
plex since unlike a relatively small number of “intrusion
only” patterns, normal network traffic can have a large num-
ber of variations. Network anomaly detection is an impor-
tant problem and an active area of research.

Table 11. User Descriptions

The DARPA data also includes user anomaly data to
evaluate anomaly detection systems. Table 11 describes
the consistent behavior of the 6 users for anomaly analy-
sis. Note that since we were the only group that performed
anomaly detection on the test data, Lincoln Labs did not
) evaluate our results. We report our experiments on the train-
5.3 User Anomaly Detection ing data here.

We apply our frequent episode algorithms to the com-

“Insiders” misusing their privileges can be hard to detect mand data from each login session (of the same user), with
since they don’t normally need to break-in, and IDSs and command as the axis feature and = 5 (i.e., we look for
security personnel tend to focus on guarding outside attackspatterns within the range of 5 consecutive commands), to
Insider problems are some of the most vexing problems formine the frequent sequential patterns on the associations
security personnel. (Indeed, who checks the checkers, i.e.among user commands, their arguments, time segments,
the person to whom the IDS reports?) and hosts. We treat the first 4 weeks as a data gathering pe-

Itis often very difficult to classify a single eventby a user riod, during which we simply merge the patterns into each
as normal or abnormal because the unpredictable nature ofiser’'s profiles. Each user has 3 profiles, one for the ac-

11

User Anomaly Description 6 Related Work

programmer2 logs in from beta

secretary logs in at night

sysadm logs in from jupiter Network intrusion detection has been an on-going re-

programmerl] becomes a secretary search area [17]. More recent systems, e.g. Bro [18],

secretary becomes a manager NFR [6], and EMERALD [19] all made extensibility their

programmerd] logs in at night primary design goals. Our research focuses on automatic

sysadm becomes a programmer methods for constructing intrusion detection models. The

managerl becomes a sysadm metf'i-learning mechanism is designed to aut_omate_ the ex-

manager2 logs in from pluto _tentlon process of IDSs. We shar_e the_same views discussed
in [20] that an IDS should be built using standard compo-

Table 12. User Anomaly Description nents. We believe that the operating system and network-
ing community should be responsible for building a robust
“Event” box.

User Normal | Anomaly In [10], algorithms for analyzing user shell commands
programmer2 (0.58,0.79)] 0.00 and detecting anomalies were discussed. The basic idea is
secretary (00,) 0.00 to first collapse the multi-column shell commands into a sin-
sysadm (0.84,0.95)] 0.00 gle stream of strings, and then string matching techniques
programmerl (0.31,1.00)] 0.04 and consideration of “concept drift” are used to build and
secretary (0.41,0.98)| 0.17 update user profiles. We believe that our extended frequent
programmerl| (oo, c0) 0.00 episodes algorithm is a superior approach because it consid-
sysadm (0.64,0.95)| 0.00 ers both the association among commands and arguments,
managerl (0.57,1.00)| 0.00 and the frequent sequential patterns of such associations.
manager2 (2.00, 1.00)] 0.00

S _ 7 Conclusions and Future Directions
Table 13. Similarity with User's Own Profile

In this paper, we outline a data mining framework for
constructing intrusion detection models. The key idea is to
apply data mining programs to audit data to compute misuse
and anomaly detection models, according to the observed
behavior in the data. To facilitate adaptability and extensi-

tivities of each time segment (am, pm, and nt). We treat
the 5th week as the training period, during which we com-
pare the patterns from each session to the profile of the

time segment. We record the normal range of the similar- bility. we propose the use of meta-leaming as a means to
ity scores during this week. The data in the 6th week has Y, brop 9

some user anomalies, as described in Table 12. For each O?onstruct a combined model that incorporate evidence from

. : : multiple (lightweight) base models. This mechanism makes
the anomalous sessions, we compare its patterns against th

-) : . St feasible to introduce new ID components in an existing
original user’s profile, and then compare the resulting sim-

ilarity score against the recorded normal range of the sameIDS possibly without significant re-engineering.

time segment. In Table 13, the column labeled “Normal”is ~ We extend the basic association rules and frequent
the range of similarity of each user against his or her own epPisodes algorithms to accommodate the special require-
profile as recorded during the 5th week.oA here means ~ Ments in analyzing audit data. Our experiments show that
that the user did not login during the time segment in the 5th the frequent patterns mined from audit data can be used as
week. The column “Anomaly” is the similarity measure of reliable user anomaly detection models, and as guidelines

the anomalous session described Table 12. We see that afPr Selecting temporal statistical features to build effective
anomalous sessions can be clearly detected since their sinfclassification models. Results from the 1998 DARPA Intru-

example, when the sysadm becomes programmer (see Tapi@odels performed as well as th_e best systems built using
12), his/her patterns have zero matches with the sysadm’dhe manual knowledge engineering approaches.

profile, while for the whole 5th week, the pm similarity Our future work includes developing network anomaly
scores are in the range of 0.64 to 0.95. Unfortunately, for- detection strategies, and devising a mechanical procedure
mal evaluation statistics are not available to determine theto translate our automatically learned detection rules into
error rates of this approach. However, this initial test indi- modules for real-time IDSs. A preliminary project in col-
cates a path worthy of future study. laboration with NFR has just started.

12

8 Acknowledgments

We wish to thank our colleagues at Columbia University,
Chris Park, Wei Fan, and Andreas Prodromidis, for their
help and encouragement.

References

(1]

(2]

[3] W. W. Cohen.

(4]

(5]

(6]

R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
tion rules between sets of items in large database®rdn
ceedings of the ACM SIGMOD Conference on Management
of Data pages 207-216, 1993.

P. K. Chan and S. J. Stolfo. Toward parallel and disteblut
learning by meta-learning. IWAAI Workshop in Knowledge
Discovery in Databasepages 227-240, 1993.

Fast effective rule induction. Machine
Learning: the 12th International Conferenckake Taho,
CA, 1995. Morgan Kaufmann.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD
process of extracting useful knowledge from volumes of
data. Communications of the ACM9(11):27—34, Novem-
ber 1996.

K. llgun, R. A. Kemmerer, and P. A. Porras. State tran-
sition analysis: A rule-based intrusion detection appnoac
IEEE Transactions on Software Engineeringl(3):181—
199, March 1995.

N. F. R. Inc. Network flight recorder. http://www.nfr.og
1997.

[7] V. Jacobson, C. Leres, and S. McCanne. tcpdump. availabl

(8]

(9]

(10]

(11]

(12]

(13]

(14]

via anonymous ftp to ftp.ee.lbl.gov, June 1989.

C. Ko, G. Fink, and K. Levitt. Automated detection of vul-
nerabilities in privileged programs by execution monitgri

In Proceedings of the 10th Annual Computer Security Appli-
cations Conferencgages 134-144, December 1994.

S. Kumar and E. H. Spafford. A software architecture to
support misuse intrusion detection. PRmoceedings of the
18th National Information Security Conferengages 194—
204, 1995.

T. Lane and C. E. Brodley. Sequence matching and legrnin
in anomaly detection for computer security. AAAIl Work-
shop: Al Approaches to Fraud Detection and Risk Manage-
ment pages 43—49. AAAI Press, July 1997.

W. Lee and S. J. Stolfo. Data mining approaches for intru
sion detection. IrProceedings of the 7th USENIX Security
SymposiumSan Antonio, TX, January 1998.

W. Lee, S. J. Stolfo, and K. W. Mok. Mining in a data-flow
environment: Experience in intrusion detection. subrditte
for publication, March 1999.

T. Lunt. Detecting intruders in computer systems.Pho-
ceedings of the 1993 Conference on Auditing and Computer
Technology1993.

T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neuman
H. Javitz, A. Valdes, and T. Garvey. A real-time intrusion de
tection expert system (IDES) - final technical report. Téchn
cal report, Computer Science Laboratory, SRI Internatjona
Menlo Park, California, February 1992.

13

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

H. Mannila and H. Toivonen. Discovering generalized
episodes using minimal occurrences. Rmoceedings of
the 2nd International Conference on Knowledge Discovery
in Databases and Data MiningPortland, Oregon, August
1996.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discov-
ering frequent episodes in sequences. Phoceedings of
the 1st International Conference on Knowledge Discovery
in Databases and Data MinindMontreal, Canada, August
1995.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network
intrusion detectionlEEE Network May/June 1994.

V. Paxon. Bro: A system for detecting network intruders
in real-time. InProceedings of the 7th USENIX Security
SymposiumSan Antonio, TX, 1998.

P. A. Porras and P. G. Neumann. Emerald: Event mongorin
enabling responses to anomalous live disturbancedNai
tional Information Systems Security ConfergriBaltimore
MD, October 1997.

S. Stainford-Chen. Common intrusion detection frammew
http://seclab.cs.ucdavis.edu/cidf.

S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W
Fan, and P. K. Chan. JAM: Java agents for meta-learning
over distributed databases. Rroceedings of the 3rd In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 74-81, Newport Beach, CA, August 1997.
AAAI Press.

SunSoft, Mountain View, CA.SUnSHIELD Basic Security
Module Guide

