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Abstract

We propose methods to enhance existing user authentication paradigms
(such as passwords) with continuous active authentication. Our system adds
additional levels of security without burdening the user with more credentials
to manage. We utilize two complementary authentication modalities to val-
idate user-identity: 1) behavior profiling for user-system interaction, and 2)
baiting adversaries using automatically distributed file-decoy tripwires. We
present the results from a 160-subject user study used to validate our system.
Our results show that the presence of decoy documents on a system does not
interfere with normal user activities, and that, with 95% accuracy, our sys-
tem will detect an intrusion within 15 minutes with at most one false-positive
for 40 hours of user activity.
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1. Introduction

Data theft remains one of the main cyber risks incurred by organizations
and individuals alike. Verizon’s data breach investigation report [1] analyzed
more than 2,500 data breaches, resulting in more than 1.1 billion compro-
mised records over the nine-year range of the study. It reports that 92%
of the investigated data breaches were perpetrated by external attackers. It
also highlights the fact that 66% of these data theft incidents took months
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or longer to be discovered, while most of the attacks were not sophisticated.
The report reveals that neither the existing access control technologies de-
signed to prevent unauthorized access to data, nor the more sophisticated
Data Loss Prevention technologies have been effective at preventing such
attacks against enterprises.

In fact, existing access control mechanisms rely mostly on passwords,
which have long been used as the first (and often only) step in authentica-
tion. While mostly reliable, their main downside is that passwords are often
easily transferable, stolen, or guessed. Several studies have illustrated the
limitations of using passwords for access control [2, 3, 4]. These reports show
that passwords can be hard to remember and manage, as password policies
now require longer and more complex passwords that have to be changed
more frequently.

Passwords are also typically only used at the beginning of a session, and
the user is implicitly trusted for the duration. In this paper, we propose
to enhance existing authentication methods with continuous active authenti-
cation techniques based on modeling and validating user-system interaction
and by using file system decoys. Our goal is to detect unauthorized misuse
of a user’s credentials by periodically and transparently validating the mon-
itored behavior against known profiles for legitimate activity. “Behavior”,
in this paper, is a general term for how a user interacts with the computing
environment, e.g. open files, processes, accessing the network etc.

We propose two complementary authentication modalities: 1) user be-
havior modeling and validation, and 2) baiting adversaries using file decoys.
Although modeling users’ system interactions has been studied in previous
work [5], this work validates our approach with large-scale user studies, in-
cluding a masquerader study where users are asked to mimic insiders who
have gained illegitimate access. In this paper, a “masquerader” refers to
someone who is accessing another person’s computing environment without
authorization, using that person’s (the victim’s) credentials. This project
also introduced more advanced host sensors which were better able to cap-
ture user behavior with respect to their operating system. Additionally, this
paper is the first to assess the interaction between behavior analytics and
decoys.

Our approach is based on the hypothesis that masqueraders will be unfa-
miliar with the target environment, and will act differently than a legitimate
user. We posit that it is possible to enumerate a set of system-level measure-
ments suitable for detecting masqueraders whose actions are motivated by
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data theft. The owner of a system, who is intricately familiar with their own
system, should access their own data in a targeted, purposeful, and verifiable
manner, while a masquerader, who is attempting to steal information from
an unfamiliar system, would interact with the system in a measurably abnor-
mal manner. Prior work has shown that such differences in search behavior
may be used to detect masquerade attacks motivated by data theft [6], a
concept which is enhanced and refined using the broader dataset collected as
part of this study.

Use of decoy files is an extension of tripwire-based detection paradigm,
and have been shown to be effective in identifying malfeasance [7, 8, 9, 10].
It leverages the fact that masqueraders would not be able to recognize such
traps in an unfamiliar environment. This paper provides details of a formal
user study that corroborates this conjecture, and extends upon this with
new decoy-based technologies. In our system, decoys are generated and dis-
tributed automatically, and after a number of decoy file touches, the system
will notify the true owner via an out-of-band alert and execute a mitigation
strategy. Monitoring access to decoy data can thus provide additional and
immediate high-confidence detection in a practical and cost effective fashion.

Prior user studies in this area have been limited in scale [5]. This paper
broadens and extends previous research with a more principled design for
the behavior modeling algorithms. While prior use of decoys for security
has been studied [10, 8, 11, 9], they lacked a large-scale evaluation for how
often legitimate users would trigger on their own decoys (false positive rate);
this is addressed in our study. Our experiment shows that users touch decoys
frequently when first placed in the file system, but soon their curiosity decays
and additional touches become rare, thus these files do not interfere with
normal operations.

Our user study included 209 users who have installed our sensors on
their desktop and laptop computers. The sensor software collected pertinent
features as these participants utilized their systems as they typically work on
a day-to-day basis. In addition, 22 users recruited to act as masqueraders who
have gained access to a target system; these participants were instructed to
steal information while their (malicious) behaviors were recorded [10]. This
study improves upon prior classification performance by demonstrating that
our latest behavior-based classifier achieves a baseline detection accuracy of
68% at 1% FP rate, and when used in continuous active authentication, has
an expected 95% chance of detecting a malicious session within 15 minutes,
under the constraint that only one false positive is generated per typical
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40-hour work week.
This paper is organized as follows. Section 2 reviews pertinent previous

work in the areas of continuous authentication and deception-based computer
defenses. Next, Section 3 presents our active authentication approach and
establishes the details of our threat model. Section 3.1 explains the imple-
mentation of the host sensors. Section 4 presents our experimental setup,
while Section 5 discusses the details of our user behavior models. We eval-
uate the proposed active authentication approach in Section 6. Finally, we
conclude the paper with Section 7.

2. Related Work

This journal paper is an extension of our prior workshop paper [12] on
the same topic. The main contributions of this work include a significantly
larger user study along, updated feature sets, and new performance results
from this larger study. This section summarizes prior work related to the
proposed detection modalities: continuous authentication and deception or
“decoy” based detection.

2.1. Continuous Authentication

Behavior-based biometrics can be used to provide non-intrusive user au-
thentication. Several such approaches have been proposed to authenticate
users at the beginning of a user session. Most of these are based on
modeling mouse movement patterns or typing patterns, typically referred to
as keystroke dynamics [13, 14, 15, 16, 17]. Other similar works sought to
attribute a user session to a given user at the end of a user session, i.e.
once the session is over [18, 19, 20, 21]. However, little work focused on
behavioral biometrics as active authentication mechanisms throughout the
entire user session.

Some researchers proposed approaches relying on soft biometric traits for
authentication, such as a user’s skin color or the color of their clothes [22],
although such security mechanisms are easily evaded. Furthermore, they
continue to rely on the initial login as the main protection mechanism and do
not provide any a method to augment password-based initial authentication
solutions. Our approach focuses on continuous authentication through a
user’s session.

Keystroke and mouse dynamics have been the main continuous authenti-
cation method of the past, as they do not require any specialized equipment
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or additional hardware. Various modeling approaches have been proposed
with varying accuracy results. Shen, Cai and Guan proposed a continuous
authentication mechanism based solely on mouse usage patterns [23]. They
distinguished between patterns, or frequent segments of mouse dynamics,
and holistic behavior, the more intermittent pieces. They found that “pat-
terns” are more descriptive of user behavior as they are stable features across
user sessions. The same patterns emerged as discriminative features, i.e. de-
scriptive of unique user behavior.

Pusara and Brodley built C5.0 decision trees on the basis of users’ mouse
movements within a time window of configurable size, and used the models
to re-authenticate users [24]. The data was collected in a free environment,
i.e. from the users’ own computers. But the user sample was too limited to
report generalizable results. The mouse movement-based models, which were
trained using data from all 11 users, achieved an average false-acceptance rate
(FAR) of 1.75% and an average false-rejection rate (FRR) of 0.43%, but the
verification time took up to 15 minutes depending on the size of the time
window.

Meng, Gupta, and Gao have recently investigated whether some people
can change their typing pattern and mimic a targeted victim’s keystroke
dynamics when typing their password [25]. They developed a system that
trained impostors to mimic the password typing behavior of a certain victim.
The system, called Mimesis, provided feedback to the impostors, each time
they typed the victim’s password. Experiments were performed with two
different passwords: an easy to type, all lower-case password, and a harder
one, with a combination of lower and upper case letters, as well as special
characters. The experiments demonstrated that the attackers could quickly
learn and adopt the victim’s typing behavior, particularly when typing the
easy password, showing that keystroke biometrics might not be effective in
mitigating weak passwords.

Although some promising results have been reported, authentication us-
ing mouse dynamics and free-text keystroke dynamics have not matured as
a reliable technology. They have been tested within limited and pre-defined
settings (e.g. while working on a specific task or interacting with one appli-
cation), and therefore have not dealt with the intrinsic behavioral variability
as users interacts with different applications.

In our study, we do not restrict our measurements to specific software
applications or specific hardware devices. Instead, we provide an installable
sensor and monitor user’s behaviors as they interact with their own comput-
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ing environments, at work and at home. Furthermore, our approach is less
vulnerable to changes in user behavior due to physiological factors such as
pain or injury, which can affect keyboard or mouse dynamics.

2.2. Decoys and Deception

The earliest known example of deception in computer security literature
is a discussion by Hollingworth about how “entrapment modules” can be
used to augment computer defenses [26]. Computers intended to serve as
bait for malicious actions are typically referred to as “honeypots,” while
networks of such machines go by “honeynets.” These systems are typically
self-contained and deployed to appear as though they are useful components
of a broader network. However, they are actually partitioned from valued
network components and do not store any meaningful data themselves.

“Honeytokens” extend the concept of honeypots in a way that is more
valuable against masquerade attacks and other insider threats [27]. Coined
by Spitzner, honeytokens apply the concept of deception-based defense to
computer systems at a finer granularity. Instead of entire phony machines or
networks, honeytokens are discrete chunks of information which are designed
to lure attackers with data that appears enticing, but is in fact spurious.
A fabricated set of personally identifiable information is a representative
example of a honeytoken. Files, which house such deception data, are referred
to as “honeyfiles” [28]. Decoys described in this paper are variations of
honeyfiles. They are used as tripwires in our system, but are also capable of
acting as beacons to send signals back to a central server.

3. Active Authentication

We propose an active authentication modality to validate user identity.
This is based on profiling users’ unique behaviors as they interact with their
personalized computing environments. Our sensor monitors file system ac-
cess, process- and networking-related behaviors, as well as access to decoy
files. Our objective is to capture a unique cognitive fingerprint for each user.
Our behavior models are built on meta-data level measurements, and mea-
sures occurrences of distinct events without using data content. For example,
we do not make use of information such as which websites a user visits or
the contents of any particular file; rather we look at when such events occur,
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with respect to time, order, and volume (rate). Active authentication is per-
formed by periodically and transparently validating a user’s behavior against
pre-trained models.

In our study, masqueraders are assumed to have bypassed the initial au-
thentication (password login) phase. Masqueraders are expected to have
limited knowledge of the system upon initial access – specifically, they would
have limited knowledge of where valuable resources are located and where
decoy files are placed. When such decoys are accessed (“touched”), the sen-
sor would automatically respond via an additional identification challenge or
act according to some other security policy.

With regard to behavior, the masquerader can not be expected to simul-
taneously explore an unknown environment and search for valuable informa-
tion while accurately mimicking the victim’s normal profile; this information
would be unknown to the masquerader. Even if an attacker is able to suc-
cessfully emulate recent user activity, via program histories, for example, our
approach would still limit the duration and scope of such an attack, prevent-
ing large-scale exfiltration of data. Although collecting data to verify these
assumptions fell outside of the scope of the present work, we plan to conduct
studies which verify the implausibility of evading detection by observing and
mimicking an authentic user’s system usage behavior as future work.

We developed sensors for both Windows and OS X. They were designed
to be lightweight and transparent, and monitor user-OS interaction contin-
uously. Variations of these sensors were used to collect the dataset used in
our experiments. For brevity, only the Windows sensor is described in this
paper (all references are to this version); the OS X version differs only in
implementation details and is functionally equivalent.

3.1. Modular Host Sensor

The sensor is designed in a modular fashion to allow easy hooking into
native subsystems, and to provide the ability of add additional components
as needed. These modules hook into low-level operating system libraries to
minimize data collection overhead. The current list of implemented modules
are given below:

Process Monitor: This module monitors process creation and termina-
tion events. It records the process ID, its executable path, its state, the time
at which the process was created or terminated, and the parent process ID. It
polls the system at a fixed interval to take a snapshot of all processes at the
moment, comparing it with the last snapshot to determine which processes
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are newly spawned and which ones have terminated. The time between when
a process appears and when it is removed determines its life span.

Window Touches Monitor: The windows monitor logs when a new
graphical window is switched to the foreground. The monitor records fore-
ground window information, including its title, the current thread ID and
process ID responsible for the window. By noting the time when the user
switches between windows the sensor can log how long a specific window was
in focus.

File Touches Monitor: The file monitor audits the system for various
file touch events. These notifications are raised when a file is created, re-
named, deleted, or any part of it is changed, including its name, attributes,
creation time, last access time, last write time, security settings, and size.
In addition, this monitor will check the file touched to determine if the file
accessed is a decoy. System files touches are filtered by the sensor for opti-
mization purposes.

Port Monitor: The port monitor sensor queries the state of all the
TCP connections on the system. It examines all the connections, filters out
local connections. The connections are compared with those polled in the
previous cycle to identify new and terminated connections. The port monitor
logs the opening and the closing of ports. The particular port number and
its duration is then logged.

Log Monitor: The log monitor uses the existing System and Event Log
infrastructure in the local operating system to monitor log entries. OS level
audits ensure that specific security events will trigger a system or security
log event which the sensor logs.

Decoy deployment module: The behavioral sensor also features the
Decoy Distributor Tool (DDT) described in Section 3.2. Integration with
DDT enables decoy deployment automation and fast detection of decoy
touches, which are logged by the host sensor.

One challenge in behavior profiling is how to isolate user -triggered eventes
from system-triggered events. Opening a web-browser is a user event; caching
a file is a system event. Intuitively, only user-triggered events are relevant
for active authentication, and we want to ignore actions generated without
direct user influence, such as via background processes: anti-virus, file back-
up, version control software, etc. Within the scope of our study, we relied on
white-listing known system background processes. This includes rundll32.exe
and csrss.exe. Fine turning this measurment is the subject of our continued
research.
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3.2. Decoy Technology

In our system, decoys are normal document files such as PDFs and Word
documents that exist within a file system. Without opening them, they are
indistinguishable from other files of the same type. However, when they are
opened, the system will immediately trigger an intrusion response. Decoy
technology is founded on the idea that user workstations are personalized to
them – users who are familiar with their own systems will learn (over time)
to avoid their own tripwires, while intruders who are unfamiliar with the
target environment would inadvertantly trigger them.

We developed a decoy generation system [11] to efficiently create, man-
age, and monitor decoys with minimal user involvement. Users can generate
and download personalized decoys from our servers. These decoy files con-
tain unique watermarks that our sensors recognize. Our sensor hooks into
the underlying process that Windows uses to open files to scan for these wa-
termarks for every opened file. This includes copying, moving, and deleting
files. As long as our host sensor is running, a decoy file cannot be manip-
ulated without being detected. Our system is accessible as a web site that
offers several decoy related services to users [29].

To automate decoy document generation and distribution we developed
the Decoy Distributor Tool (DDT). DDT is a tool designed to disseminate
decoys throughout a file system with minimal user interactions. It does not
require any prior knowledge of the organization or the content of the file
system where decoys are to be placed. It reduces the complexity of decoy
document distribution to simple choices of the amount of decoys desired and
the portion of a file system on which they are to be placed, thus substantially
lowering the time required to establish a system of insider threat sensors,
while retaining all of the security benefits of manual decoy usage.

3.3. Decoy Document Placement

A study performed in [9] demonstrated that the placement of decoy docu-
ments greatly affects the probability of a user accessing these files. Locations
in which decoys are placed on a file system should be carefully selected so
that the decoys remain conspicuous to malicious insiders but do not impede
a legitimate user’s normal actions. The DDT scans from the root folder
specified on the target machine and identifies two sets of folders: one set of
10 folders with the most recently accessed documents and another set of 10
folders containing the greatest number of files with common document ex-
tensions .pdf, .doc, .docx, .ppt, .xls, .txt, .html, and .htm. Selecting the most
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populated and most recently accessed folders increases the conspicuousness
of decoys, since these are likely directories that would be the most probable
targets for malicious insiders. The DDT first chooses folders from the inter-
section of these two sets, i.e. folders with both properties of most recently
accessed and the greatest number of files with common document extensions
in it. It then proceeds to populate the remaining 10 most crowded directo-
ries, followed by any of the top 10 directories showing the most activity that
have not yet been included.

However, one might argue that placing the decoy documents in high-
traffic locations would interfere with the user’s normal activities and would
drive the user to accidentally open these files occasionally. In an effort to eval-
uate decoy files’ interference property, we administered a user study which
we referred to as the RUU2 (”Are You You?”) project [30]. Figure 1 de-
picts the amount of decoys that were touched by a RUU2 user on average
as our sensor application proceeded to monitor their computer usage. Data
was taken from 200 RUU2 clients. There is a large spike in decoy access
immediately after observation commences. This represents both the initial
deployment of decoys as well as initial user curiosity regarding the presence
of these files on their system. After this bootstrapping procedure, decoys are
less likely to be accessed.

In Figure 2, we focus on a single RUU2 participant to provide a more
detailed look at decoy access behavior for a particular user. Despite the fact
that the user’s overall file system activity remains constantly high throughout
our observation window, the only time this particular user accessed his or her
decoy files was at the very beginning of the study, when half of the 40 decoys
that were distributed were touched. This plot demonstrates the differences
between decoy access rates and the number of times users touch their file
system in general. Users are far less likely to access their decoys after their
initial curiosity has died down.

When blending decoy documents into a folder with existing documents,
the DDT chooses a date for the file depending on the naming convention
selected. If the naming method appends either “-final” or “-updated” to a
filename, the DDT will set the document’s creation date to at most 48 hours
after the most recently created document in the destination directory. The
document’s last modified date will then be set to up to two days after the
resultant creation date. If an adversary decides to sort the contents of that
folder by date, the decoy documents would appear at the top of the sorted
list, making them prominent and likely more attractive targets.
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Figure 1: Average Decoy Touch Rate Across All RUU2 Users Aligned by Log Process
Percentage

4. User Study Design and Setup

We conducted a multi-month IRB-approved user study with over 200 hu-
man subjects for the purpose of data-collection. The volunteers in this study
installed a version of our sensor that was tuned to passively collect behav-
ior measurements, and ran these sensors for varying lengths of time. These
high-level measurements, described in the following section, are anonymized
to remove personal information and uploaded to our central server. The data
was subsequently used to test behavior models, measure decoy access rates,
and evaluate detection and false-postive rates. All data is assumed to reflect
normal (benign) user activity with no malicious (masquerader) instances. In
a separate study, we recruiters volunteers to act as masqueraders. The data
we gathered over the course of this study was treated as the malicious class
of measurements and analyzed to measure the efficacy of our approach.

For the first phase of the study, users were required to use their own
computers, so no experimental framework was required. We discuss the
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Figure 2: A Sample of a RUU2 User’s Total Actions versus his or her Decoy Actions

design of this portion of our study in Section 4.1. The second part of this
study required a controlled working environment in order to capture instances
of masquerader behavior. We detail this study in Section 4.2.

4.1. Data collection and Decoy Analysis

The goal of this study was to collect data and measure the extent to which
our authentication approach interfered with the everyday usage patterns for
legitimate users. We recruited over 200 users to participate in a long-term
(multi-month) study. We reached out primarily to students studying at the
computer science department at a large university in the United States. This
study was advertised by posting flyers around campus, via email solicitation,
and posting on popular classified listings web sites.

Potential applicants were directed to a website that provided a summary
of study details, such as what data would be recorded and our experiment
objectives. This web site also included a download link to our sensor software.
After installing the sensor on their systems, users were directed to a web
based form which asked them to register their sensor’s identification number
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with their contact information. Our pool of users were drawn primarily from
the University community.

After installing and registering the sensor software, users were asked to
run DDT, which was included as a component in the sensor. This step
generated and distributed 40 decoy files throughout their home directories.
A variety of decoy file types were generated, resembling typical files, such as
fake tax return statements, credit card receipts, project-related files, to-do
lists, etc.

Out of a total of 209 installations, 49 were either test sensors used for
development purposes or were users who contributed insufficient amounts of
data for modeling. This left us with a pool of 160 users who contributed
sufficient data. Roughly 120 of these were Windows users, and the rest were
OS X users. The capture period spanned one week on average; some were as
short as a few minutes while others extended up to three months.

4.2. Detection Validation

This second, separate study was aimed at collecting instances of mas-
querader activity, and was much shorter in duration in order to reflect real
intrusion instances. The goal is to record and measure masquerader activity
in a controlled environment as they attempt to seek out data in an unfamiliar
system. Thirty decoy files were distributed within the file system. This study
included 22 participants, who were all compensated $10 for their assistance.

We created a target system for attacks by creating a virtual image of a
file system which had been actively used in our lab as part of normal research
for years. We used an existing machine that had seen real use instead of a
fresh installation because it had gathered data and applications in a way that
would be difficult to believably replicate. Using a refreshed virtual machine
for each masquerader test, instead of a single computer whose state would
change for each trial, each participant was assured to be working in exactly
the same environment. The file system on the machine was a replica of a
real file system with real user data copied from a student’s laptop.

The DDT was then used to fetch 40 decoy files from our decoy creation
site [29] and sow these files throughout our test file system. Forty files were
selected to create an even comparison to the study performed in [9]. In
addition to its other tasks including recording user interactions with the
system, we used our sensor software to monitor access to these files.

As discussed in Section 3.3, the DDT places decoys in the most active
directories according to file volume and recentness of activity. Table 1 lists the
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locations that our distribution prototype identified as being the most suitable
for decoy deployment. Note that there are 17 target directories because we
opted to use the 10 largest directories as well as the 10 directories with the
most recent activity; the first three directories on the list were among the
top ten on the file system for both recent activity as well as the amount of
files they contained.

1 C:\Documents and Settings\username\Desktop
2 C:\Documents and Settings\username\My Documents
3 C:\
4 C:\Documents and Settings\username\My Documents\Downloads
5 C:\Documents and Settings\username\My Documents\WebServices
6 C:\Documents and Settings\username\Downloads
7 C:\Documents and Settings\username\My Documents\

BusinessAnalysis
8 C:\Documents and Settings\username\My Documents\Mortgage
9 C:\Documents and Settings\username\My Documents\Confidential\

Employee Evaluations
10 C:\Documents and Settings\username\My Documents\Taxes
11 C:\Documents and Settings\username\My Documents\Financial
12 C:\Documents and Settings\username\My Documents\Financial\

Bank Statements
13 C:\Documents and Settings\username\My Documents\Personal
14 C:\Documents and Settings\username\Desktop\Insurance
15 C:\Documents and Settings\username\My Documents\Architecture
16 C:\Documents and Settings\username\My Documents\CrazyBusy
17 C:\Documents and Settings\username\My Documents\work files

Table 1: Decoy Destination Directories Selected by the DDT

Each masquerader was provided a scenario that asked participants to
put themselves in the role of a person under financial duress. The scenario
further described a situation in which the participant would have good reason
to resent a coworker who may have (financially) lucrative data on his or
her machine. Note that this is critical to manipulate the intention of the
participant and to give them a motive for malicious action. In this paper
this is referred to as the “Masquerader dataset.”
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We prepared two variants of the scenario description which was presented
to the participants in the detection validation study. To avoid introducing un-
necessary confounding factors, these study instruments differed in one small
but important aspect. One scenario specifically informed participants of the
presence of decoy documents in the test environment while the other did not.
The effect of this variable on the behavior of our simulated masqueraders is
explored in Section 6.4.

5. User Behavior Modeling

Our sensor records system-level events that include: process creation and
deletion, window manipulation, network, and file-system actions. These
events are stored locally as sensor logs on the host machine, where they
are continuously analyzed by a statistical-pattern-recognition module con-
tained within the sensor. This module applies a sliding window to the sensor
logs and extracts statistical features from this data. These features are de-
fined as the occurrence rates of different categories of monitored system-level
events, and are used as our unit of measurement for a “behavior sample”
at any particular time. This section describes our feature selection process,
our modeling approach, and discussions on measurement window sizes and
how it affects accuracy. Experiments show that a five-minute sliding window
would work well in practice.

For each behavior sample, classification involves three distinct steps: 1)
feature extraction from sensor logs, 2) feature enrichment/normalization, and
3) comparison against a known profile to decide whether the instance is
considered normal or abnormal.

5.1. Feature Extraction

Sensor logs are formatted as a tuple consisting of time, action category,
action type, and details related to that action, organized in the following
form:

[time stamp, category, action type, detail]

so a sequence of measured events may look like:

...

00:00:00 01/01/2013, file, open, c:\windows\somefile.txt
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00:00:02 01/01/2013, file, delete, c:\windows\someotherfile.txt

00:00:14 01/01/2013, proc, create, c:\programs\prog1.exe

...

We segregate these measurable events into 20 canonical categories. For a
particular time-window, feature extraction involves counting the number of
occurrences for each of these events within that particular window. These
categories were selected through an iterative process of tuning the sensor’s
activity collector and adjusting the statistical models to see what information
was available from the underlying operating systems as well as what worked
best given the selected environment. The goal was to produce a model that
offered high performance with low latency and overhead. Other factors that
influenced this choice include data-alignment.

Feature extraction is used to enhance the discriminative power of the
classifier. Intuitively, not all feature measurements will be equally useful. In
fact, inclusion of overlapping or superfluous features (identical measurements
from both legitimate and illegitimate use) might make masqueraders appear
more like a normal user than they would otherwise. Part of our study is
to discover which classes of measurements are more useful in discriminating
between different behavior patterns.

We approached this by using a discriminant analysis technique known
as “Fisher’s criteria” to score each scalar feature in the feature vector. Our
implementation for Fisher’s criteria, in this case the one-dimensional vari-
ation, evaluates the value of each feature independently via the ratio of
the inter-class and intra-class variance. This step is defined as follows: let
m1,m2, ...,mk represent the arithmetic means of a measured feature for k
users, and define mG = 1/k

∑k
i=1mk to represent the global (grand) mean.

Fisher’s “score” is defined as:

s =
σb∑k
i=1 σi

,

where σb is the between-class variance

σb =

√√√√ k∑
i=1

(mi −mG)2,

and σi is the within-class variance for a particular user. The one-dimensional
variation is appropriate because the underlying measurements were designed
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to be mostly independent. For example, file-access is not directly related to
window movements. Further, we note that we evaluated linear discriminant
analysis (using a projection unto a lower-dimensional feature sub-space) and
found that it yielded no performance benefits 1. The above equation is max-
imized when a feature has both low within-class variance (very stable and
predictable) and high between-class variance (appears very different for every
class.)

Our 20 features, ranked by their Fisher scores, are listed in Table 2. These
results were generated by measuring the data collected from the “normal
users” group in our study, described in Section 4. Note that these results were
tuned to discriminate amongst instances of normal user behavior – they are
extracted using the samples collected by the normal user pool. No malicious
samples were incorporated in this evaluation process, these were not used
in order to avoid introducing bias towards the detection of any specific type
of intrusion. We tuned our feature set to identify differences in instances of
normal behavior (a 160-class problem), and it is our hypothesis that the same
set of features would perform well for the easier problem of discriminating
between legitimate and malicious behavior (a 2-class problem.)

We justify these assumptions with experiment results shown in the subse-
quent section. While we did not use malicious samples when tuning/training
our models, we used these when we evaluated the masquerade detection ac-
curacy of the system. These separate experiments were carried out with data
collected via the second “masquerader” study, where users were asked to act
as insider threats.

In our model, we categorize PDFs, Microsoft Word files, Excel files, RTF
files, text files, and similar document-type files as the “document” class.
The label “decoy” is self-describing, and we use the more general “file” label
to represent any other file type. Since our features are based on access
counts, the volume of activity across these different features may vary by
wide ranges, and this may introduce model bias towards some features with
high volume. Therefore, we use the standard approach of log-squashing this
value to smooth the measurements; this removes bias and prevent any one
feature from dominating the others. For each feature x, we generate the

1direct comparison with FLD variation of Fisher’s method omitted due to space limi-
tation
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Fisher Score Feature type

1 0.027054 Number of processes deleted
2 0.015762 Number of processes created
3 0.014442 Number of file changes
4 0.008218 Number of window touches
5 0.005888 Number of ports opened
6 0.004987 Number of ports closed
7 0.001290 Number of decoys renamed
8 0.000660 Number of documents touched
9 0.000231 Number of system actions
10 0.000156 Number of files renamed
11 0.000000 Number of ACL related actions
12 0.000000 Number of files touched
13 0.000000 Number of decoys created
14 0.000000 Number of decoys deleted
15 0.000000 Number of decoys touched
16 0.000000 Number of documents created
17 0.000000 Number of documents deleted
18 0.000000 Number of documents renamed
19 0.000000 Number of files created
20 0.000000 Number of files deleted

Table 2: Fisher discriminant analysis results

normalized value x∗:
x∗ = log(x+ 1).

Examining the results, the scores for decoy-related features 13, 14, and 15
at first seem to show that decoys are not useful in discriminating behavior.
However, this is not correct – the numbers actually show something more
subtle.

First, recall that decoys are explicitly modeled in the ML component.
Rather, decoys act as independent tripwires in an orthogonal strategy that
plays a separate role in our sensor architecture.

Referring to the results seen in Table (2), we see that decoy-related actions
yielded low discriminative scores. What this shows is that the users in our
study exhibited consistent behavior with respect to decoy-access patterns; so
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much so that their behavior is statistically indiscernible from one another.
In fact, all users in the normal control group acted on deployed decoys in
the same way: there was some initial burst of activity when decoys were
first created – possibly because users were curious as to what would happen
if they opened them – then, as the users got used to the decoys’ presence,
touch rates dropped to zero and stayed that way throughout the course of
the study. What the results in Table (2) show, therefore, is that decoy use
does not interfere with normal system activity, and that this is consistent
across all users. Later sections show more specific examples of how decoy
touch rates drop.

5.2. Modeling

Since we did not want to pre-define a prototypical masquerader class, a
generative-based machine learning model was more appropriate. Thus, we
derive a model for normal behavior and alert on outliers as masqueraders
(i.e anomaly detection.) We interpret the individual features within a time
slice as independently and identically distributed (i.i.d.) multivariate feature
vectors – assuming that each instance comes from some underlying distri-
bution and each (x -minute) time-slice is statistically independent from the
rest. In practice, some statistical dependence exists – for example, repeat-
edly opening a URL contained within a document – however, we chose to
drop this assumption to simplify the model and avoid overfitting. We use
a Gaussian Mixture Model (GMM) to fit this distribution; GMM is a well-
known generative model that is widely used as a standard benchmark for
learning algorithms. As our work in this area is relatively new, and there
are few direct comparisons available; the use of GMMs establishes a reliable
baseline. Anecdotally, if we had explicitly defined an attack pattern (attacker
class) then more powerful discriminative-based methods such as support vec-
tor machines would be available. To maximize classification performance, we
use only features with Fisher scores greater than zero (refer to Table 2.)

Let x represent the aforementioned multivariate feature vector (in column
form), let µ represent the sample mean:

µ =
1

N

N∑
i=1

xi,

19



and Σ represent the sample covariance matrix:

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)>,

for training samples x1, x2, ..., xN , the prototypical GMM definition utilizing
full-ranked covariance matrices is defined as:

p(x|θ) =
1

(2π)d/2
√
|Σ|

exp

(
−1

2
(x− µ)Σ−1(x− µ)>

)

q(x|Θ) =
k∑

i=1

αip(x|θi)

where θi = {µi,Σi} and αi is the mixing coefficient for the GMM. q(·) is the
final GMM likelihood function that is used to evaluate a sample, and k is the
number of Gaussians in the mixture. In practice, k is analogous to the k in
the well known k-means algorithm, and is selected via experimental tuning
(in fact, GMM is a more generalized version of k-means.) These parameters
are optimized (“learned”) via the expectation maximization (EM) algorithm.
EM is standard parameter estimation technique. At a high level, it works
by calculating the sum likelihood of the training data and finding the set of
parameters that optimizes this function:

arg max
Θ

(
q(X|Θ) =

N∑
i=1

q(xi|Θ)

)
Parameter estimates for Θ are updated by taking a step towards the gradient
of this likelihood function. Essentially, the process is a gradient descent
estimation algorithm. Since the mathematical procedure for deriving GMM-
style parameter updates using EM are known, they were omitted for brevity.
By using the greedy technique proposed by Verbeek et. al [31], a GMM can
be efficiently trained in O(k2n+kmn) time, where n is the number of training
samples, k is the mixture component count, and m is the number of variants
to be checked for each component.

6. Results

First, we evaluate the model accuracy by measuring the discriminative
power of the classifier within the normal users in the RUU dataset, by com-
paring their logs against each other’s. This measures instances of normal

20



behavior vs. other normal behavior, and represents the “harder” detection
problem because it consists of 160 classes of normal behavior. Next we show
the results of a user study where volunteers were recruited to act as masquer-
aders, where their actions were recorded as a second “masquerader dataset.”
The masquerader detection is an easier challenge because we detect anoma-
lies on a per-user basis and therefore it is a two-class problem. We report
the performance of our classifier on this dataset. Finally, we examine at the
effects of decoy deployment in real world-tested environments by looking at
false trigger rates in our user study to show that decoys use do not interfere
with behavior modeling.

6.1. Behavior classification

Figure 3: Multi-class classification. Average ROC for Gaussian Mixture Model with
Fisher-features. 160 users from the RUU dataset.

Figure 3 shows the average Receiver-Operator-Characteristic (ROC) curve
for the 160 users. This experiments evaluates our model’s ability to discrim-
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inate between different instances of legitimate activity across 160 different
users. This classification task is more challenging than detecting deviations
from one particular user’s behavior pattern. We use this challenge to tune
our sensors and our models. Performance results against masquerader activ-
ity, which is the ultimate goal of the sensor architecture, are reported in the
following subsection are shown to be much higher.

This ROC result shows that at 10% FP rate, the classifier can discrimi-
nate legitimate user actions from among 160 different users with roughly 57%
accuracy. Evaluation was performed using one-vs-all, max-likelihood classi-
fication, where each test sample was evaluated against every user model and
labeled with the user whose model yielded the highest likelihood score. The
random-guess baseline for this experiment would yield 1/160 = 0.63% ac-
curacy. All report numbers in this paper are averages of five independent
trials.

Figure 4 shows the Area-Under-The-Curve measurement, which is the
integral of the ROC. This measurement gives us an aggregate score for each
user and allows us to chart the classification accuracy across users, and shows
the distribution of accuracies across all users.

6.2. Masquerader Detection

Classifying masqueraders is a two-class problem, making it “easier” than
the 160-class problem that our sensor as tuned on. The results in this section
provide evidence to support this. Our generative-based approach allowed us
to formulate our models without training against any specific attack patterns
to avoid the pitfall of potentially over-fitting to one specific masquerader
profile.

Figure 5 shows the ROC results for the masquerader dataset. For detec-
tion evaluation, we train a model for each legitimate RUU user using that
user’s own traffic, and then measure the detection accuracy of the GMM
model against all of the sensor logs generated by the masqueraders in this
study. Figure 5 shows the average ROC across all RUU users in detecting
these 22 masqueraders. As demonstrated by Axelsson in [32], a intrusion
detection method is restricted more by its false positive rate than by its true
detection accuracy. We therefore select a false positive threshold value and
use this to determine our system’s effective detection rate. From our ROC
curve, we can see that our classifier achieves 68% detection at 1% FP rate,
and 73% masquerader behavior detection accuracy at a 2% FP.
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Figure 4: Multi-class normal-behavior classification ROC: differentiating between samples
of normal behavior among 160 users. Area under the curve (AUC) results for Gaussian
Mixture Model with Fisher-features. Average AUC = 0.7722.

Figure 6 shows the AUC chart for the masquerader set. As the results
show, the performance is much higher on the real-world-measured intrusion
dataset, even though the attacker class was not explicitly modeled in our
method and no malicious behavior data was used in the training process.
Classification accuracy is entirely dependent on the model’s ability to recog-
nize outliers from normal behavior.

While the results reflect aggregate detection rates across all instances
of masquerade data, when the sensor is deployed in practice, however, the
accuracy rate is determined by the continuous re-evaluation procedure. Con-
tinuous active-authentication means that the sensor would issue an identity
challenge as soon as the first alert is detected. Therefore only one alert is
needed before a successful interdiction, if we assume that the attacker cannot
correctly answer the challenge.
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Figure 5: Masquerader detection ROC: discriminating between normal vs. masquerader
data.

For example, setting the FP rate to be 2%, and let y represent the chance
that the sensor fails to detect a legitimate user, y = 1 − 0.73 = 0.27, the
number of behavior time slices evaluated before there is a less than 5% chance
of continued evasion is:

0.27x < 0.05

x < log(0.05)/ log(y = 0.27)

x ≈ 2.29

thus we need 3 samples (roughly 15 minutes of activity) before the sensor
can be expected to detect a masquerader with greater than 1− 0.05 = 95%
probability. Ultimately, the factors that influence this performance curve is
multifaceted and their relations non-linear. Performance depends on model
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Figure 6: Masquerader detection AUC per user.

evaluation period as well as the user-configured desired FP rate. We tabulate
some potential settings that we feel are realistic and extrapolate the expected
sensor performance. These results are shown in Table (3).

For the technique to be considered practical in real-world environments,
it must operate at extremely low FP rates. For a more stringent setting,
figure 7 shows the accuracy range for FP rates within the 0-1% range. These
results were obtained in the same manner as those shown in figure 5 – only
the targeted FP range has changed. To provide some perspective, if our
sensor were to be installed in a business workstation and used continuously
throughout a 40-hour work week, and tuned to yield only one false-positive
during this time, table 3 shows the expected time-to-detection (TTD) per-
formance given evaluation frequency.

Consider one row in this table: with an evaluation frequency of once every
3 minutes, a 40-hour work week would trigger 800 evaluations. In order to
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Figure 7: Masqueraders detection accuracy within the very restrictive 0-1% FP range.

Frequency Total Samples FP Req. Acc. Evals TTD
1m 2400 0.042% 49.55% 5 5m
2m 1200 0.083% 50.29% 5 10m
3m 800 0.125% 51.46% 5 15m
4m 600 0.167% 53.11% 4 16m
5m 480 0.208% 54.00% 4 20m

Table 3: Time until detection (TTD) given evaluation frequency for a 40-hour work week.

maintain the at most one false positive per week, the sensor must be tuned
so that it performs with a maximum 0.125% FP rate. At this FP rate, the
sensor has a base accuracy of 51.46% according to the masquerader ROC
(false negative is the complement 48.54%), which means five evaluations are
necessary before there is a less than 5% chance that a masquerader remains
undetected. This yields a TTD estimate of 15 minutes.

26



6.3. Non-Interference of Decoys

Since our technology deploys decoys to the user’s file system, it follows
that we should consider the potential for false positives, where a legitimate
user triggers a defensive reaction by accessing these files. Our study includes
an analysis of how the presence of decoy documents interferes with normal
operations. We found that users quickly learned to avoid their own decoys
after the initial deployment period.

Figure 8: Average decoy touch rate across all 160 RUU users, aligned by progression %
(beginning to end).

Figure 8 shows decoy access behavior averaged across 160 users in the
RUU dataset. The x-axis represents the study’s progression percentage: 0%
indicates the beginning of the study and 100% indicates the conclusion of the
study. There is a large spike in decoy access immediately after the experiment
begins. This is expected behavior because the user is instructed to deploy
decoys to their system, thus the sensor picks up some initial decoy-related
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actions. It also reflects initial user curiosity regarding the presence of these
files on their system; users will attempt to open decoy documents to see
what would happen. After this short bootstrapping phase, the figures show
that decoys are infrequently accessed. These results show that decoys do not
interfere with normal activity. Legitimate system users are not confused by
decoys due to their ability to discern their spurious content from their own
authentic data.

6.4. Influence of Knowledge Regarding Decoy Presence

As discussed in Section 4.2, an auxiliary goal of our detection validation
study was to assess the impact of decoy knowledge on decoy efficacy. That
is, we wished to determine whether users’ awareness of the presence of decoy
documents on a system made them better or worse at avoiding the detec-
tion of their masquerader activity. To this end we designed two variants
of the written study scenario which was supplied to our participants. Test
subjects in one group received a scenario which specifically identified decoy
documents as a security mechanism. The alternative scenario, on the other
hand, included a more generic statement regarding system surveillance. 10
participants were recruited to test each variant of these scenarios.

The difference between decoy access rates for the informed and unin-
formed pool of users is shown in Figure 9. As this figure illustrates, the
amount of detail provided to our simulated masqueraders did not have a sta-
tistically significant effect on participants’ rate of decoy access. The average
and minimum amounts of decoy access events remained the same for users
when decoys were mixed in with legitimate file locations.

Intuitively, our initial hypothesis was that informing masqueraders of
the presence of decoy content on a system would cause them to hesitate
to interact with the system when compared to users who do not have any
knowledge that decoys are being employed as a security mechanism. The
results of our detection validation do not offer evidence in support of this
claim though. We were unable to identify any statistical difference between
the group of users who were notified regarding decoy content and those who
were left uninformed.

A surprising finding of our study was the result that under some circum-
stances informing masqueraders of the presence of decoys seems to have in
fact increased rates of decoy activity. Though more research is needed to
fully ascertain the underlying rationale behind this observation, we currently
suspect that this had to do with the fact that although users were aware of
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Figure 9: Comparison of Decoy Document Access Event Distributions for Different User
Scenarios

the fact that decoys were deployed on a system, they had no prior experience
working with a system in the presence of decoy material.

7. Conclusion

We introduced novel methods for real-time continuous active-authentication
based on automatically learning and validating user-system interaction (be-
havior) patterns. Beyond behavior modeling, the sensor also deploys and
monitors decoy trip-wires that may be programmmatically generated and
distributed. This technology augments existing data protection measures by
adding a new transparent layer of active authentication. We have experimen-
tally demonstrated that our methods can achieve good performance under
realistic (< 0.01%) FP requirements. We have further shown that our gener-
ated decoys do not interfere with normal user activity. The results of large-
scale user studies demonstrate that this approach is potentially very effective
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in protecting personal data, even in cases where attackers posses their target
victims’ credentials. The machine-learning-based classifier achieves masquer-
ader detection accuracy of 95% with an expected time-to-detection (TTD)
of 15 minutes when using a 3 minute reevaluation interval, while obeying the
constraint that only one false positive is generated per 40-hours of activity.
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