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Abstract

A method is proposed for semiparametric estimation where parametric and non-
parametric criteria are exploited in density estimation and unsupervised learning.
This is accomplished by making sampling assumptions on a dataset that smoothly
interpolate between the extreme of independently distributed (or id) sample data
(as in nonparametric kernel density estimators) to the extreme of independent
identicallydistributed (oriid) sample data. This article makes independentsimi-
larly distributed (orisd) sampling assumptions and interpolates between these two
using a scalar parameter. The parameter controls a Bhattacharyya affinity penalty
between pairs of distributions on samples. Surprisingly, the isdmethod maintains
certain consistency and unimodality properties akin to maximum likelihood esti-
mation. The proposedisd scheme is an alternative for handling nonstationarity in
data without making drastic hidden variable assumptions which often make esti-
mation difficult and laden with local optima. Experiments indensity estimation
on a variety of datasets confirm the value ofisd over iid estimation,id estimation
and mixture modeling.

1 Introduction

Density estimation is a popular unsupervised learning technique for recovering distributions from
data. Most approaches can be split into two categories: parametric methods where the functional
form of the distribution is known a priori (often from the exponential family (Collins et al., 2002;
Efron & Tibshirani, 1996)) and non-parametric approaches which explore a wider range of distri-
butions with less constrained forms (Devroye & Gyorfi, 1985). Parametric approaches can underfit
or may be mismatched to real-world data if they are built on incorrect a priori assumptions. A
popular non-parametric approach is kernel density estimation or the Parzen windows method (Sil-
verman, 1986). However, these may over-fit thus requiring smoothing, bandwidth estimation and
adaptation (Wand & Jones, 1995; Devroye & Gyorfi, 1985; Bengio et al., 2005). Semiparametric
efforts (Olking & Spiegelman, 1987) combine the complementary advantages of both schools. For
instance, mixture models in their infinite-component setting (Rasmussen, 1999) as well as statistical
processes (Teh et al., 2004) make only partial parametric assumptions. Alternatively, one may seed
non-parametric distributions with parametric assumptions (Hjort & Glad, 1995) or augment para-
metric models with nonparametric factors (Naito, 2004). This article instead proposes a continuous
interpolation betweeniid parametric density estimation andid kernel density estimation. It makes
independentsimilarly distributed (isd) sampling assumptions on the data. Inisd, a scalar parameter
λ trades off parametric and non-parametric properties to produce an overall better density estimate.
The method avoids sampling or approximate inference computations and only recycles well known
parametric update rules for estimation. It remains computationally efficient, unimodal and consistent
for a wide range of models.



This paper is organized as follows. Section 2 shows howid andiid sampling setups can be smoothly
interpolated using a novelisd posterior which maintains log-concavity for many popular models.
Section 3 gives analytic formulae for the exponential family case as well as slight modifications
to familiar maximum likelihood updates for recovering parameters underisd assumptions. Some
consistency properties of theisdposterior are provided. Section 4 then extends the method tohidden
variable models or mixtures and provides simple update rules. Section 5 provides experiments
comparingisdwith id andiid as well as mixture modeling. We conclude with a brief discussion.

2 A Continuum between id and iid

Assume we are given a dataset ofN − 1 inputsx1, . . . ,xN−1 from some sample spaceΩ. Given
a new query inputxN also in the same sample space, density estimation aims at recovering a
density functionp(x1, . . . ,xN−1,xN ) or p(xN |x1, . . . ,xN−1) using a Bayesian or frequentist ap-
proach. Therefore, a general density estimation task is, given a datasetX = x1, . . . ,xN , recover
p(x1, . . . ,xN ). A common subsequent assumption is that the data points areid or independently
sampled which leads to the following simplification:

pid(X ) =

N
∏

n=1

pn(xn).

The joint likelihood factorizes into a product of independent singleton marginalspn(xn) each of
which can be different. A stricter assumption is that all samples share thesamesingleton marginal:

piid(X ) =

N
∏

n=1

p(xn).

which is the populariid sampling situation. In maximum likelihood estimation, either of the above
likelihood scores (pid or piid) is maximized by exploring different settings of the marginals. The
id setup gives rise to what is commonly referred to as kernel density or Parzen estimation. Mean-
while, theiid setup gives rise to traditionaliid parametric maximum likelihood (ML) or maximum
a posteriori (MAP) estimation. Both methods have complementary advantages and disadvantages.
The iid assumption may be too aggressive for many real world problems. For instance, data may
be generated by some slowly time-varying nonstationary distribution or (more distressingly) from
a distribution that does not match our parametric assumptions. Similarly, theid setup may be too
flexible and might over-fit when the marginalpn(x) is myopically recovered from a singlexn.

Consider the parametric ML and MAP setting where parametersΘ = {θ1, . . . , θN} are used to
define the marginals. We will usep(x|θn) = pn(x) interchangeably. The MAPid parametric
setting involves maximizing the following posterior (likelihood times a prior) over the models:

pid(X , Θ) =
N
∏

n=1

p(xn|θn)p(θn).

To mimic ML, simply setp(θn) to uniform. For simplicity assume that these singleton priors are
always kept uniform. ParametersΘ are then estimated by maximizingpid. To obtain theiid setup,
we can maximizepid subject to constraints that force all marginals to be equal,in other words
θm = θn for all m, n ∈ {1, . . . , N}.

Instead of applyingN(N − 1)/2 hard pairwise constraints in aniid setup, consider imposing
penalty functions across pairs of marginals. These penaltyfunctions reduce the posterior score when
marginals disagree and encourage somestickinessbetween models (Teh et al., 2004). We measure
the level of agreement between two marginalspm(x) andpn(x) using the following Bhattacharyya
affinity metric (Bhattacharyya, 1943) between two distributions:

B(pm, pn) = B(p(x|θm), p(x|θn)) =

∫

pβ(x|θm)pβ(x|θn)dx.

This is a symmetric non-negative quantity in both distributions pm and pn. The natural choice
for the setting ofβ is 1/2 and in this case, it is easy to verify the affinity is maximal and equals
one if and only ifpm(x) = pn(x). A large family of alternative information divergences exist



to relate pairs of distributions (Topsoe, 1999) and are discussed in the Appendix. In this article,
the Bhattacharyya affinity is preferred since it has some useful computational, analytic, and log-
concavity properties. In addition, it leads to straightforward variants of the estimation algorithms as
in the id andiid situations for many choices of parametric densities. Furthermore, (unlike Kullback
Leibler divergence) it is possible to compute the Bhattacharyya affinity analytically and efficiently
for a wide range of probability models including hidden Markov models (Jebara et al., 2004).

We next define (up to a constant scaling) the posterior score for independentsimilarly distributed
(isd) data:

pλ(X , Θ) ∝
∏

n

p(xn|θn)p(θn)
∏

m 6=n

Bλ/N (p(x|θm), p(x|θn)). (1)

Here, a scalar powerλ/N is applied to each affinity. The parameterλ adjusts the importance of the
similarity between pairs of marginals. Clearly, ifλ → 0, then the affinity is always unity and the
marginals are completely unconstrained as in theid setup. Meanwhile, asλ → ∞, the affinity is
zero unless the marginals are exactly identical. This produces theiid setup. We will refer to theisd
posterior as Equation 1 and whenp(θn) is set to uniform, we will call it theisd likelihood. One can
also view the additional term inisd asid estimation with amodifiedprior p̃(Θ) as follows:

p̃(Θ) ∝
∏

n

p(θn)
∏

m 6=n

Bλ/N (p(x|θm), p(x|θn)).

This prior is a Markov random field tying all parameters in a pairwise manner in addition to the
standard singleton potentials in theid scenario. However, this perspective is less appealing since it
disguises the fact that the samples are not quiteid or iid.

One of the appealing properties ofiid andid maximum likelihood estimation is its unimodality for
log-concave distributions. Theisdposterior also benefits from a unique optimum and log-concavity.
However, the conditional distributionsp(x|θn) are required to bejointly log-concave in both param-
etersθn and datax. This set of distributions includes the Gaussian distribution (with fixed variance)
and many exponential family distributions such as the Poisson, multinomial and exponential distri-
bution. We next show that theisd posterior score for log-concave distributions is log-concave inΘ.
This produces a unique estimate for the parameters as was thecase forid andiid setups.

Theorem 1 The isd posterior is log-concave for jointly log-concave density distributions and for
log-concave prior distributions.

Proof 1 Theisd log-posterior is the sum of theid log-likelihoods, the singleton log-priors and pair-
wise log-Bhattacharyya affinities:

log pλ(X , Θ) = const +
∑

n

log p(xn|θn) +
∑

n

log p(θn) +
λ

N

∑

n

∑

m 6=n

logB(pm, pn).

Theid log-likelihood is the sum of the log-probabilities of distributions that are log-concave in the
parameters and is therefore concave. Adding the log-priorsmaintains concavity since these are log-
concave in the parameters. The Bhattacharyya affinities arelog-concave by the following key result
(Prekopa, 1973). The Bhattacharyya affinity for log-concave distributions is given by the integral
over the sample space of the product of two distributions. Since the term in the integral is a product
of jointly log-concave distributions (by assumption), theintegrand is a jointly log-concave function.
Integrating a log-concave function over some of its arguments produces a log-concave function in
the remaining arguments (Prekopa, 1973). Therefore, the Bhattacharyya affinity is log-concave in
the parameters of jointly log-concave distributions. Finally, since theisd log-posterior is the sum of
concave terms and concave log-Bhattacharyya affinities, itmust be concave.

This log-concavity permits iterative and greedy maximization methods to reliably converge in prac-
tice. Furthermore, theisd setup will produce convenient update rules that build uponiid estimation
algorithms. There are additional properties ofisd which are detailed in the following sections. We
first explore theβ = 1/2 setting and subsequently discuss theβ = 1 setting.



3 Exponential Family Distributions and β = 1/2

We first specialize the above derivations to the case where the singleton marginals obey theexpo-
nential familyform as follows:

p(x|θn) = exp
(

H(x) + θT

nT (x) − A(θn)
)

.

An exponential family distribution is specified by providingH , the Lebesgue-Stieltjes integrator,θn

the vector of natural parameters,T , the sufficient statistic, andA the normalization factor (which
is also known as the cumulant-generating function or the log-partition function). Tables of these
values are shown in (Jebara et al., 2004). The functionA is obtained by normalization (a Legendre
transform) and is convex by construction. Therefore, exponential family distributions are always
log-concave in the parametersθn. For the exponential family, the Bhattacharyya affinity is com-
putable in closed form as follows:

B(pm, pn) = exp (A(θm/2 + θn/2) − A(θm)/2 − A(θn)/2) .

Assuming uniform priors on the exponential family parameters, it is now straightforward to write
an iterative algorithm to maximize theisd posterior. We find settings ofθ1, . . . , θN that maximize
the isd posterior orlog pλ(X , Θ) using a simple greedy method. Assume a current set of param-
eters is availablẽθ1, . . . , θ̃N . We then update a singleθn to increase the posterior while all other
parameters (denoted̃Θ/n) remain fixed at their previous settings. It suffices to consider only terms
in log pλ(X , Θ) that are variable withθn:

log pλ(X , θn, Θ̃/n) = const + θT

nT (xn) −
N + λ(N − 1)

N
A(θn) +

2λ

N

∑

m 6=n

A(θ̃m/2 + θn/2).

If the exponential family isjointly log-concave in parameters and data (as is the case for Gaussians),
this term is log-concave inθn. Therefore, we can take a partial derivative of it with respect toθn and
set to zero to maximize:

A′(θn) =
N

N + λ(N − 1)



T (xn) +
λ

N

∑

m 6=n

A′(θ̃m/2 + θn/2)



 . (2)

For the Gaussian mean case (i.e. a white Gaussian with covariance locked at identity), we have
A(θ) = θT θ. Then a closed-form formula is easy to recover from the above1. However, a simpler
iterative update rule forθn is also possible as follows. SinceA(θ) is a convex function, we can
compute a linear variational lower bound on eachA(θm/2 + θn/2) term for the current setting of
θn:

log pλ(X , θn, Θ̃/n) ≥ const + θT

nT (xn) −
N + λ(N − 1)

N
A(θn)

+
λ

N

∑

m 6=n

2A(θ̃m/2 + θ̃n/2) + A′(θ̃m/2 + θ̃n/2)
T

(θn − θ̃n).

This gives an iterative update rule of the form of Equation 2 where theθn on the right hand side is
kept fixed at its previous setting (i.e. replace the right hand sideθn with θ̃n) while the equation is
iterated multiple times until the value ofθn converges. Since we have a variational lower bound,
each iterative update ofθn monotonically increases theisdposterior. We can also work with a robust
(yet not log-concave) version of theisd score which has the form:

log p̂λ(X , Θ) = const +
∑

n

log p(xn|θn) +
∑

n

log p(θn) +
λ

N

∑

n

log





∑

m 6=n

B(pm, pn)



 .

and leads to the general update rule (whereα = 0 reproducesisdand largerα increases robustness):

A′(θn) =
N

N + λ(N − 1)



T (xn) +
λ

N

∑

m 6=n

(N − 1)Bα(p(x|θ̃m), p(x|θ̃n))
∑

l 6=n Bα(p(x|θ̃l), p(x|θ̃n))
A′(θ̃m/2 + θ̃n/2)



 .

We next examine marginal consistency, another important property of theisdposterior.

1The update for the Gaussian mean with covariance=I is: θn = 1
N+λ(N−1)/2

(Nxn + λ/2
P

m6=n θ̃m).



3.1 Marginal Consistency in the Gaussian Mean Case

For marginal consistency, if a datum and model parameter arehidden and integrated over, this should
not change our estimate. It is possible to show that theisd posterior is marginally consistent at least
in the Gaussian mean case (one element of the exponential family). In other words, marginalizing
over an observation and its associated marginal’s parameter (which can be taken to bexN andθN

without loss of generality) still produces a similarisd posterior on the remaining observationsX/N

and parametersΘ/N . Thus, we need:
∫ ∫

pλ(X , Θ)dxNdθN ∝ pλ(X/N , Θ/N ).

We then would recover the posterior formed using the formulain Equation 1 with onlyN − 1
observations andN − 1 models.

Theorem 2 Theisd posterior withβ = 1/2 is marginally consistent for Gaussian distributions.

Proof 2 Start by integrating overxN :

∫

pλ(X , Θ)dxN ∝
N−1
∏

i=1

p(xi|θi)
N
∏

n=1

p(θn)
N
∏

m=n+1

B2λ/N (pm, pn)

Assume the singleton priorp(θN ) is uniform and integrate overθN to obtain:

∫ ∫

pλ(X , Θ)dxNdθN ∝

N−1
∏

i=1

p(xi|θi)

N−1
∏

n=1

N−1
∏

m=n+1

B2λ/N (pm, pn)

∫ N−1
∏

m=1

B2λ/N (pm, pN )dθN

Consider only the right hand integral and impute the formulafor the Bhattacharyya affinity:

∫ N−1
∏

m=1

B2λ/N (pm, pN)dθN =

∫

exp

(

2λ

N

N−1
∑

m=1

A

(

θm

2
+

θN

2

)

−
A(θm)

2
−

A(θN )

2

)

dθN

In the (white) Gaussian caseA(θ) = θT θ which simplifies the above into:

∫ N−1
∏

m=1

B2λ/N (pm, pN)dθN =

∫

exp

(

−
2λ

N

N−1
∑

m=1

A

(

θm

2
−

θN

2

)

)

dθN

∝ exp

(

2λ

N(N − 1)

N−1
∑

n=1

N−1
∑

m=n+1

A

(

θm

2
+

θn

2

)

−
A(θm)

2
−

A(θn)

2

)

∝

N−1
∏

n=1

N−1
∏

m=n+1

B
2λ

N(N−1) (pm, pn)

Reinserting the integral changes the exponent of the pairs of Bhattacharyya affinities between the
(N − 1) models raising it to the appropriate powerλ/(N − 1):

∫ ∫

pλ(X , Θ)dxNdθN ∝

N−1
∏

i=1

p(xi|θi)

N−1
∏

n=1

N−1
∏

m=n+1

B2λ/(N−1)(pm, pn) = pλ(X/N , Θ/N ).

Therefore, we get the sameisdscore that we would have obtained had we started with only(N − 1)
data points. We conjecture that it is possible to generalizethe marginal consistency argument to
other distributions beyond the Gaussian. Theisdestimator thus has useful properties and still agrees
with id whenλ = 0 andiid whenλ = ∞. Next, the estimator is generalized to handle distributions
beyond the exponential family where latent variables are implicated (as is the case for mixtures of
Gaussians, hidden Markov models, latent graphical models and so on).



4 Hidden Variable Models and β = 1

One important limitation of most divergences between distributions is that they become awkward
when dealing with hidden variables or mixture models. This is because they may involve intractable
integrals. The Bhattacharyya affinity with the settingβ = 1, also known as the probability product
kernel, is an exception to this since it only involves integrating the product of two distributions.
In fact, it is known that this affinity is efficient to compute for mixtures of Gaussians, multino-
mials and even hidden Markov models (Jebara et al., 2004). This permits the affinity metric to
efficiently pull together parametersθm andθn. However, for mixture models, there is the presence
of hidden variablesh in addition to observed variables. Therefore, we replace all the marginals
p(x|θn) =

∑

h
p(x,h|θn). The affinity is still straightforward to compute for any pair of latent

variable models (mixture models, hidden Markov models and so on). Thus, evaluating theisd pos-
terior is straightforward for such models whenβ = 1. We next provide a variational method that
makes it possible to maximize a lower bound on theisd posterior in these cases.

Assume a current set of parameters is availableΘ̃ = θ̃1, . . . , θ̃N . We will find a new setting forθn

that increases the posterior while all other parameters (denotedΘ̃/n) remain fixed at their previous
settings. It suffices to consider only terms inlog pλ(X , Θ) that depend onθn. This yields:

log pλ(X , θn, Θ̃/n) = const + log p(xn|θn)p(θn) +
2λ

N

∑

m 6=n

log

∫

p(x|θ̃m)p(x|θn)dx

≥ const + log p(xn|θn)p(θn) +
2λ

N

∑

m 6=n

∫

p(x|θ̃m) log p(x|θn)dx

The application of Jensen’s inequality above produces an auxiliary functionQ(θn|Θ̃/n) which is a
lower-bound on the log-posterior. Note that each density function has hidden variables,p(xn|θn) =
∑

h
p(xn,h|θn). Applying Jensen’s inequality again (as in the Expectation-Maximization or EM

algorithm) replaces the log-incomplete likelihoods overh with expectations over the complete pos-
teriors given the previous parametersθ̃n. This givesisd the following auxiliary functionQ(θn|Θ̃) =

∑

h

p(h|xn, θ̃n) log p(xn,h|θn) + log p(θn) +
2λ

N

∑

m 6=n

∫

p(x|θ̃m)
∑

h

p(h|x, θ̃n) log p(x,h|θn)dx.

This is a variational lower bound which can be iteratively maximized instead of the originalisd
posterior. While it is possible to directly solve for the maximum of Q(θn|Θ̃) in some mixture
models, in practice, a further simplification is to replace the integral overx with synthesized samples
drawn fromp(x|θ̃m). This leads to the following approximate auxiliary function (based on the law
of large numbers) which is merely the update rule for EM forθn with s = 1, . . . , S virtual samples
xm,s obtained from them’th modelp(x|θ̃m) for each of the otherN − 1 models,Q̃(θn|Θ̃) =

∑

h

p(h|xn, θ̃n) log p(xn,h|θn) + log p(θn) +
2λ

SN

∑

m 6=n

∑

s

∑

h

p(h|xm,s, θ̃n) log p(xm,s,h|θn).

We now have an efficient update rule for latent variable models (mixtures, hidden Markov models,
etc.) which maximizes a lower bound onpλ(X , Θ). Unfortunately, as with most EM implementa-
tions, the arguments for log-concavity no longer hold.

5 Experiments

A preliminary way to evaluate the usefulness of theisd framework is to explore density estimation
over real-world datasets under varyingλ. If we setλ large, we have the standardiid setup and
only fit a single parametric model to the dataset. For smallλ, we obtain the kernel density or
Parzen estimator. In between, an iterative algorithm is available to maximize theisd posterior to
obtain potentially superior modelsθ∗1 , . . . , θ

∗
N . Figure 1 shows theisd estimator with Gaussian

models on a ring-shaped 2D dataset. The new estimator recovers the shape of the distribution more
accurately. To evaluate performance on real data, we aggregate theisd learned models into a single
density estimate as is done with Parzen estimators and compute theiid likelihood of held out test
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Figure 1: Estimation withisd for Gaussian models (mean and covariance) on synthetic data.

Dataset id iid-1 iid-2 iid-3 iid-4 iid-5 iid-∞ isdα = 0 isdα = 1
2

SPIRAL -5.61e3 -1.36e3 -1.36e3 -1.19e3 -7.98e2 -6.48e2 -4.86e2 -2.26e2 -1.19e2
MIT-CBCL -9.82e2 -1.39e3 -1.19e3 -1.00e3 -1.01e3 -1.10e3 -3.14e3 -9.79e2 -9.79e2

HEART -1.94e3 -2.02e4 -3.23e4 -2.50e4 -1.68e4 -3.15e4 -4.02e2 -4.51e2 -4.47e2
DIABETES -6.25e3 -2.12e5 -2.85e5 -4.48e5 -2.03e5 -3.40e5 -8.22e2 -8.28e2 -8.09e2
CANCER -5.80e3 -7.22e6 -2.94e6 -3.92e6 -4.08e6 -3.96e6 -1.22e2 -5.54e2 -5.54e2
LIVER -3.41e3 -2.53e4 -1.88e4 -2.79e4 -2.62e4 -3.23e4 -4.56e2 -4.74e2 -4.69e2

Table 1: Gaussian test log-likelihoods usingid, iid, EM,∞ GMM and isd estimation.

data via
∑

τ log
(

1
N

∑

n p(xτ |θ
∗
n)
)

. A larger score implies a betterp(x) density estimate. Table 1
summarizes experiments with the Gaussian (mean and covariance) models. On 6 standard datasets,
we show the average test log-likelihood of Gaussian estimation while varying the settings ofλ
compared to a singleiid Gaussian, anid Parzen RBF estimator and a mixture of 2 to 5 Gaussians
using EM. Comparisons with (Rasmussen, 1999) are also shown. Cross-validation was used to
choose theσ, λ or EM local minimum (from ten initializations), for theid, isd and EM algorithms
respectively. Train, cross-validation and test split sizes where 80%, 10% and 10% respectively. The
test log-likelihoods show thatisd outperformediid, id and EM estimation and was comparable to
infinite Gaussian mixture (iid−∞) models (Rasmussen, 1999) (which is a far more computationally
demanding method). In another synthetic experiment with hidden Markov models, 40 sequences
of 8 binary symbols were generated using 2 state HMMs with 2 discrete emissions. However, the
parameters generating the HMMs were allowed to slowly driftduring sampling (i.e. notiid). The
data was split into 20 training and 20 testing examples. Table 2 shows that theisd estimator for
certain values ofλ produced higher test log-likelihoods thanid andiid.

6 Discussion

This article has provided anisd scheme to smoothly interpolate betweenid andiid assumptions in
density estimation. This is done by penalizing divergence between pairs of models using a Bhat-
tacharyya affinity. The method maintains simple update rules for recovering parameters for exponen-
tial families as well as mixture models. In addition, theisdposterior maintains useful log-concavity
and marginal consistency properties. Experiments show itsadvantages in real-world datasets where
id or iid assumptions may be too extreme. Future work involves extending the approach into other
aspects of unsupervised learning such as clustering. We arealso considering computing theisdpos-

λ = 0 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 10 λ = 20 λ = 30 λ = ∞
-5.7153 -5.5875 -5.5692 -5.5648 -5.5757 -5.5825 -5.5849 -5.5856 -5.6152 -5.5721

Table 2: HMM test log-likelihoods usingid, iid andisd estimation.



terior with a normalizing constant which depends onλ and thus permits a direct estimate ofλ by
maximization instead of cross-validation2.

7 Appendix: Alternative Information Divergences

There is a large family of information divergences (Topsoe,1999) between pairs of distributions
(Renyi measure, variational distance,χ2 divergence, etc.) that can be used to pull modelspm andpn

towards each other. The Bhattacharya, though, is computationally easier to evaluate and minimize
over a wide range of probability models (exponential families, mixtures and hidden Markov models).
An alternative is the Kullback-Leibler divergenceD(pm‖pn) =

∫

pm(x)(log pm(x)−log pn(x))dx
and its symmetrized variantD(pm‖pn)/2 + D(pn‖pm)/2. The Bhattacharyya affinity is related to
the symmetrized variant of KL. Consider a variational distribution q that lies between the inputpm

andpn. The log Bhattacharyya affinity withβ = 1/2 can be written as follows:

logB(pm, pn) = log

∫

q(x)

√

pm(x)pn(x)

q(x)
dx ≥ −D(q‖pm)/2 − D(q‖pn)/2.

Thus,B(pm, pn) ≥ exp(−D(q‖pm)/2 − D(q‖pn)/2). The choice ofq that maximizes the lower
bound on the Bhattacharyya isq(x) = 1

Z

√

pm(x)pn(x). Here,Z = B(pm, pn) normalizesq(x)
and is therefore equal to the Bhattacharyya affinity. Thus wehave the following property:

−2 logB(pm, pn) = min
q

D(q‖pm) + D(q‖pn).

It is interesting to note that the Jensen-Shannon divergence (another symmetrized variant of KL)
emerges by placing the variationalq distribution as the second argument in the divergences:

2JS(pm, pn) = D(pm‖pm/2 + pn/2) + D(pn‖pm/2 + pn/2) = min
q

D(pm‖q) + D(pn‖q).

Simple manipulations then show2JS(pm, pn) ≤ min(D(pm‖pn), D(pn‖pm)). Thus, there are
close ties between Bhattacharyya, Jensen-Shannon and symmetrized KL divergences.
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