
Model Aggregation for
Distributed Content Anomaly Detection

Sean Whalen
shwhalen@gmail.com

Nathaniel Boggs
boggs@cs.columbia.edu

Salvatore J. Stolfo
sal@cs.columbia.edu

Columbia University
New York NY 10027, USA

ABSTRACT
Cloud computing offers a scalable, low-cost, and resilient
platform for critical applications. Securing these applica-
tions against attacks targeting unknown vulnerabilities is an
unsolved challenge. Network anomaly detection addresses
such zero-day attacks by modeling attributes of attack-free
application traffic and raising alerts when new traffic devi-
ates from this model. Content anomaly detection (CAD)
is a variant of this approach that models the payloads of
such traffic instead of higher level attributes. Zero-day at-
tacks then appear as outliers to properly trained CAD sen-
sors. In the past, CAD was unsuited to cloud environments
due to the relative overhead of content inspection and the
dynamic routing of content paths to geographically diverse
sites. We challenge this notion and introduce new methods
for efficiently aggregating content models to enable scalable
CAD in dynamically-pathed environments such as the cloud.
These methods eliminate the need to exchange raw content,
drastically reduce network and CPU overhead, and offer
varying levels of content privacy. We perform a comparative
analysis of our methods using Random Forest, Logistic Re-
gression, and Bloom Filter-based classifiers for operation in
the cloud or other distributed settings such as wireless sensor
networks. We find that content model aggregation offers sta-
tistically significant improvements over non-aggregate mod-
els with minimal overhead, and that distributed and non-
distributed CAD have statistically indistinguishable perfor-
mance. Thus, these methods enable the practical deploy-
ment of accurate CAD sensors in a distributed attack detec-
tion infrastructure.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection

Keywords
Model Aggregation, Anomaly Detection, Machine Learning
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec’14, November 7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2953-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666652.2666660.

1. INTRODUCTION
More applications each year are migrated to, or devel-

oped for, the cloud [1]. The economy of scale, on-demand
computation, centralized analytics, and numerous other ad-
vantages have resulted in mandates for government cloud
deployments [2] in addition to the momentum of the private
sector. Growing with this demand is the need for robust
zero-day attack detection as data centers become more lu-
crative targets. Current signature-based intrusion detection
fails to identify such novel attacks, while traditional anomaly
detection may be too slow to react due to its dependence on
sufficient traffic statistics.
In recent years, content anomaly detection (CAD) has

proven effective for this task while being resistant to mimicry
and poisoning attacks [3,4]. While CAD has been shown ef-
fective for sites with static request paths, load balanced dis-
tributed environments can violate the traditional assump-
tions of anomaly detection by spreading requests (and thus
content) over multiple geographically diverse sites due to
a lack of session affinity or other factors. Even at a sin-
gle geographic location, load balancers may not be suitable
hosts for heavyweight CAD sensors due to impacts on per-
formance, resilience, and security. For these reasons we wish
to spread the overhead of CAD sensors across nodes in the
system, but each distributed sensor has an incomplete view
of an application’s content in this environment. Since new
content is much more likely due to a routing change than
an actual attack, false positive rates are prohibitively high.
We term this the dynamic pathing problem of distributed
anomaly detection.
In this paper, we introduce methods for aggregating the

local CAD models of Random Forest (supervised), Logistic
Regression (supervised), and Bloom Filter (unsupervised)
classifiers trained on n-gram payloads of normal application
content. We then present an extensive comparative analysis
of CAD using our aggregation methods with a publicly avail-
able IDS dataset containing labeled content-based HTTP
attacks, as well as larger private labeled dataset collected at
Columbia University. Summarizing our primary findings:

• The area under the ROC curve for aggregated Bloom
Filter, Logistic Regression, and Random Forest con-
tent models have 95% confidence intervals of 97.3-97.7%
and 98.9-99.9% for ISCX and Columbia datasets re-
spectively, using an n-gram length of 5 and a 25-node
distributed web application simulated via cross vali-
dation. This is a statistically significant performance
improvement over non-aggregate models.

Client Attacker

Load Balancer

US West Coast
Server

US East Coast
Server

Figure 1: A load balancer routes a normal request
and an SQL injection attack to application servers
on different coasts of the US. If the west coast CAD
model detects the injection but the attacker mi-
grates to the east coast server, the injection may
be undetected there. The attack would be detected
if the individual CAD models were first aggregated
and re-distributed.

• Aggregate, unsupervised Bloom Filters have perfor-
mance comparable to supervised models, with the ad-
ditional benefit of better generalization to zero-day at-
tacks since an explicit representation of the attack class
is not necessary.

• Aggregate content model performance is statistically
indistinguishable from non-distributed CAD where all
traffic is observed by the application server.

• Our aggregation methods do not require the exchange
of content between nodes, dramatically reducing over-
head and offering varying degrees of content privacy.

As a result, we find that unsupervised Bloom Filter mod-
els combined with our aggregation methods enable practical
deployment of distributed content-based anomaly detectors
in the cloud, wireless sensor networks, or other similar envi-
ronments.

2. BACKGROUND

2.1 Load Balancing
One simple method of load balancing creates multiple IPs

for a given DNS record. To illustrate, consider a subset of
IPs returned from querying Google:

$ host -t a google.com
google.com has address 74.125.239.105
google.com has address 74.125.239.97
google.com has address 74.125.239.102

DNS clients receiving such a record will permute this address
list in a client-determined way such that different connection
attempts are likely to use a different IP. This permutation

is often round robin and thus termed Round Robin DNS
(RRDNS). If the servers at each IP provide identical ser-
vices, this offers a basic method of load balancing and scales
horizontally. The simplicity of this method is also its weak-
ness, as clients will attempt to use servers that malfunction
until the client’s DNS entries expire and an updated record
(lacking the offending server) is fetched.
Hardware load balancers (HLBs, also called network-based

load balancers) improve on the weaknesses of DNS-based
load balancing by adding server awareness and offering more
advanced balancing strategies. An HLBmight monitor server
health via echo requests and route only to responsive servers
based on (for example) average response time, fewest con-
nections, or hard-coded weights representing hardware ca-
pacity. However, HLBs are not as scalable and as a result
are often used in combination with RRDNS for extremely
high volume sites.

2.2 Geo-Distribution
Servers may reside in geographically diverse locations in

distributed environments, particularly in the cloud. To illus-
trate, Amazon provides servers in multiple geographic areas
called regions that are further divided into isolated locations
called availability zones (ex: us-east-1, us-west-1, and us-
west-2). Applications are commonly deployed using HLBs
across multiple regions in combination with DNS-based load
balancing to improve not only fault tolerance but applica-
tion latency. Companies such as Amazon, Akamai, Dynect,
and UltraDNS all have such offerings utilizing IP-based geo-
location for routing requests to servers “closest" to the client,
often at the global scale (termed Global Server Load Bal-
ancing).

2.3 The Dynamic Pathing Problem
Load balancing offers increased fault tolerance and lower

latency but may impact application usability. For example,
a user authenticated to server A in region us-west-1 might be
routed to us-west-2 due to a hardware failure and thus have
to re-login since server B is unaware of the user’s session
and its associated cookie on server A. Session stickyness
or affinity is an option provided by some HLBs to ensure
all requests during a user’s session are routed to the same
application server. It does this by creating independent load
balancer cookies that are optionally tied to the duration of
the application session cookie. For the duration of the load
balancer cookie, the same user will be routed to the same
server.
These optimizations paint a complex picture of the path

application data takes through the network. By design, each
server in the network will see only a fraction of the overall
application traffic. To secure these servers we may wish
to deploy different types of anomaly detection sensors that
allow local detection of attacks. Anomaly detection tradi-
tionally builds models over an attack-free dataset and flags
outliers as potential attacks. Without seeing the complete
picture of the network, however, a sensor deployed at a ge-
ographically diverse application server is likely to have an
extremely high false positive rate since what it considers
“normal" will vary, even from collaborating servers of the
same application.
In the following example, Amazon’s Route 53 DNS load

balancer routes client requests to an application server in
Amazon zones us-west-1 and us-east-1 (see Figure 1). An

attacker sends an HTTP request containing an SQL injec-
tion to the application, and this request is routed to us-
west-1 (path in red) by the load balancer based on their
geo-located IP. Within a similar time frame, a non-attacker
sends a normal request that is routed instead to us-east-1
(path in purple). For illustration, let only the model at us-
west-1 be capable of detecting this attack. Without some
method of model aggregation, if the attacker is ever routed
to us-east-1 due to non-sticky sessions, hardware failures, or
attacker migration, the attack will not be detected (result-
ing in a false negative). This is the dynamic pathing prob-
lem for anomaly detection: Normal models of partial traffic
are rarely trained on enough data to reliably detect attacks
or distinguish real attacks from normal traffic. We aim to
solve this problem through the introduction of low-overhead
content model aggregation schemes suitable for distributed
environments.

3. DATASET AND METHODS

3.1 Public Dataset
Publicly available IDS datasets containing both packet

payloads and ground truth “normal" or “attack" labels are
extremely rare, but are essential for fostering reproducible
research. Towards this end, we selected the Information Se-
curity Centre of Excellence (ISCX) dataset [5] to evaluate
our methods in a reproducible manner. We briefly summa-
rize the dataset here and refer to the Shiravi et al. paper [5]
for details.
The dataset captures packets as network flows (see RFC

3917) such that content sent with the same protocol, source
IP, and source port within some time period is grouped
into a single field, along with its ground truth label and
other TCP/IP fields. The captures contain 84 gigabytes of
traffic generated over 7 days; 31,414 out of 1,827,231 flows
contain attacks. Most of these attacks represent denial-of-
service, so the data is filtered down to 105 content-based
attacks with unique HTTP request payloads. These attacks
are combined with an equal number of randomly sampled
non-attack HTTP request payloads to create a balanced
dataset. This is essential for unbiased evaluation of the su-
pervised models since normal traffic is orders of magnitude
more prominent and would cause the classifier to overfit to
the majority (normal) class, though does not affect unsu-
pervised Bloom Filters.

3.2 Private Dataset
We augment our reproducible evaluation with a larger,

private dataset collected at Columbia University since the
ISCX dataset contains a smaller number of content-based
HTTP attacks. This dataset consists of 800,000 packets col-
lected from Computer Science departmental webservers in
2014, containing 34,207 normalized HTTP requests. These
requests are clustered and manually labeled as malicious or
benign. Malicious requests include SQL injection, file up-
load, and other widespread attacks.
For this dataset, the n-gram feature matrix used by the su-

pervised models (discussed next) is more densely populated
due to the larger number of samples. We downsampled the
dataset to ≈ 5,000 normal and 5,000 attack payloads for
computational efficiency when n = 5. This downsampling
results in a conservative performance estimate for unsuper-

vised Bloom Filters that intrinsically handle, and benefit
greatly from, a larger number of samples.

3.3 Feature Representation
n-Grams are a standard representation of strings as con-

secutive sequences of n bytes. They are alternately called
unigrams when individual bytes are used, digrams for two
bytes, and so on. This representation converts strings into a
feature vector suitable for machine learning algorithms. The
vector can be binary, representing the presence or absence of
each n-gram, or alternately a multinomial distribution over
n-gram counts.
To illustrate using payloads from our dataset, consider

the following example. Below is the HTTP URI of a nor-
mal request (displayed across multiple lines but not contain-
ing actual line breaks), representing the relevant application
content of the packet:

/catalog/admin/file_manager.php/login.php
?action=save

and its 5 most frequent digrams:

count
ngram
.p 2
hp 2
ph 2
in 2
og 2

Now consider the HTTP URI of a content-based attack:

/cgi-bin/;echo${IFS}-ne${IFS}"\\x6e\\x63\\x20\\x2d
\\x6c\\x70\\x20\\x

and similarly the top 5 digrams:

count
ngram
\x 8
0\ 3
x6 3
x2 3
IF 2

Given sufficient data and an appropriate n-gram length,
these distributions can distinguish normal requests from at-
tacks. Previous work found empirically that n = 5 is suit-
able for CAD [3]; we demonstrate the performance of addi-
tional values in Section 4.

3.4 Bloom Filters
Bloom Filters are extremely compact, probabilistic set

representations with a tunable false positive rate [7]. Items
are inserted using multiple hash functions to set bits in a
vector and filters can be combined or intersected using fast
and efficient logical bitwise operations. They have previ-
ously been used as micromodels for CAD [8] where collab-
orating sites exchange models of abnormal instead of nor-
mal content to efficiently share attack patterns. This is not
suitable for dynamically-pathed environments where most
traffic may look like attacks to non-aggregate models, and
so our aggregation operates on models of normal content.
To operate as a classifier, a filter is first trained by insert-

ing all n-grams for each application payload in the training

Micromodel 1
0.80

Micromodel 2
0.65

Micromodel 3
0.72

+
0.87

US West Coast Server
Micromodel 1

0.75
Micromodel 2

0.52
Micromodel 3

0.82

+
0.88

US East Coast Server

|
0.95

Global Aggregation Node

Local Content Model Local Content Model

Figure 2: Geographically diverse sites construct multiple micromodels across time with limited attack de-
tection accuracy. These micromodels are first locally aggregated, resulting in improved detection. Local
aggregate models are then sent to a central node, aggregated into a single model with a global representa-
tion of normal content and high detection accuracy, and finally re-distributed to application nodes. Given a
suitable model, these operations have low network and CPU overhead and can be de-centralized using other
algorithms such as peer-to-peer or gossip protocols [6].

set. The filter then contains a compact representation of
normal content n-grams. Predictions are made by calculat-
ing the percent of unobserved n-grams for each application
payload in the test set. This produces a vector of proba-
bilities for the test set, representing the model’s confidence
that each payload is an attack. Choosing a suitable value
of n is essential for this model as hash collisions are likely
occur for unigrams and other small values of n.
Due to the simplicity of the model, aggregation is sim-

ple: Take the logical OR of each model sent to a designated
aggregation node. This process may optionally incorporate
a threshold by counting the number of times a bit is set
at each position in the model and setting a bit in the final
model only if this count is above a certain threshold. Effec-
tively, this allows each local model to cast a vote for each bit
position in the final filter. Note that the aggregating node
needs only the space-efficient bit vector of each Bloom Fil-
ter rather than the original content to perform aggregation.
The model also provides basic privacy as the content stored
in the filter cannot be extracted—one could test for the pres-
ence of a particular n-gram, but the bits could have been
set by some other combination of n-grams since the model
achieves its compactness by allowing for false positives.

3.5 Logistic Regression
Logistic regression is the adaptation of linear regression to

classification problems with a discrete instead of real-valued
dependent variable. For binary classification, the model as-
sumes the probability that the dependent variable Yi belongs
to the positive class is a weighted combination of m predic-
tor variables Xi = x1 . . . xm. The weights β = β0 . . . βm, or
regression coefficients, can be learned by various optimiza-
tion procedures to maximize the likelihood of the training
data. The β0 term serves as the intercept. The probability
of observation i is then computed as:

E[Yi|Xi] = logistic(β ·Xi) = 1
1 + e−β·Xi

where β ·Xi is the dot product between the regression coef-
ficients and the predictor variables, and the logistic function

converts the outcome to a probability in the range 0..1. The
term x0 = 1 is included with the predictors to match up with
the intercept β0.
If each node uses the same feature space, aggregation is

again simple: the vector of regression coefficients for each
node are averaged together and re-distributed. This works
surprisingly well and also provides a basic level of content
privacy since the mapping between regression coefficients
and n-grams is not directly revealed, though strong guaran-
tees on privacy require more sophisticated approaches (see
Chaudhuri et al. [9] and related work in Section 5). Co-
efficient vectors are relatively space-efficient, particularly if
sparsity is enforced via L1-norm or LASSO regularization,
though typically not as compact as Bloom Filters (see Sec-
tion 4).

3.6 Random Forests
Decision trees map predictor variables to a target vari-

able outcome by using a tree-based representation that re-
cursively splits on individual feature values at each node
(e.g. “Go to left child node if x2 > 3.3"), starting at the
root until a leaf containing a prediction is reached. They
are extremely popular across many disciplines for their vi-
sual interpretability but are notorious for their tendency to
overfit training data. Learning decision trees from data is
a major topic in data mining and machine learning; we re-
fer the reader to introductory texts such as Mitchell [10] for
further detail.
Random forests overcome the performance limitations of

decision trees by creating an ensemble (collection) of trees
where each tree is trained on a random subset of predictors
with a resampled (with replacement) version of the train-
ing data [11]. The predictions over all trees are averaged
together to create a final prediction which is more accurate
than any individual tree, and indeed random forests offer
state-of-the-art performance for a wide variety of classifica-
tion and regression problems.
A simple method for aggregating multiple ensembles of

trees takes the union of the trees contained in each ensem-
ble. For example, aggregating 2 forests with 100 trees each

results in a single forest of 200 trees. This is neither space
nor time efficient and is included here for comparative analy-
sis to the space-efficient models above in order to determine
if extra predictive performance can be gained by using a
more complex, non-linear model. More elaborate methods
might prune the aggregate forest using some critera to main-
tain a fixed ensemble size and thus reduce network and CPU
overhead.

3.7 Cross-Validation
We estimate the generalization performance of Logistic

Regression, Random Forest, and Bloom Filter-based classi-
fiers using a standard K-fold cross-validation scheme where
K = 20. This divides the dataset into 20 folds, where 95%
of the samples in each fold are used for training and the rest
for testing the model’s performance on data that has not
been observed during training. The test set of each fold is
non-overlapping so that eventually all samples are used in-
dependently for both testing and training. The performance
over all folds is averaged to produce a final estimate of gener-
alized predictive performance that is less biased than using
a single training/test split.
We further divide the training set from each fold into L

subsets to simulate distributed environments with L nodes
as outlined in Section 2. Each subset is used to train a
separate model, termed a micromodel [8], and represents the
dynamically-pathed network traffic observed by distributed
nodes such as geographically diverse application servers in
the cloud or motes in a wireless sensor network.

3.8 Aggregation
To detect attacks observed at other nodes, micromodels

must be aggregated and re-distributed so that false positives
and false negatives can be reduced to levels that make CAD
deployment practical. Each node may train a single micro-
model or multiple micromodels using content collected at
different time intervals. Consider the simplified example of
US east and west coast regional application servers behind a
geo-locating load balancer. Each server trains three Bloom
Filter micromodels at different time intervals using requests
routed via the load balancer. The accuracy of each micro-
model is annotated in Figure 2. These three micromodels
are aggregated locally into a single micromodel using the
voting method described earlier, resulting in improved local
accuracy:

US West Coast Server
Model Bits

Micromodel A 0 1 0
Micromodel B 1 1 0
Micromodel C 0 0 1
Apply Sum 1 2 1
Apply Threshold 0 1 0

US East Coast Server
Model Bits

Micromodel A 1 1 0
Micromodel B 1 0 0
Micromodel C 1 1 0
Apply Sum 3 2 0
Apply Threshold 1 1 0

Next, the bit vector of the locally aggregated east and west
coast micromodels are transmitted to a global aggregation
node that performs a logical OR operation and re-distributes
the aggregate bit vector to each node:

Global Aggregation Node
Model Bits

Local Content Model A 0 1 0
Local Content Model B 1 1 0
Apply Logical OR 1 1 0

Both east and west coast servers now have models that per-
form substantially better than their local versions, using ex-
tremely low network and CPU overhead. Other methods for
model dissemination are also possible, such as peer-to-peer
or gossip protocols [6], to reduce dependency on a single-
point-of-failure aggregator.
The two-phase aggregation scheme outlined above is use-

ful when each model votes during the first phase; if a simple
OR is used without voting, the local aggregate is the same
as having a single local micromodel. Since this concept can-
not be implemented in the same way for Logistic Regression
and Random Forests, we restrict the comparative analysis
in Section 4 to one-phase aggregation by a single node and
present our analysis of two-phase aggregation elsewhere.

3.9 Metrics: AUC
Presented with a test set, a model produces a vector of

probabilities corresponding to its confidence that each test
sample belongs to the positive (attack) class. To convert this
probability into a label, a threshold would be set for the sen-
sor and samples with a probability above this threshold will
be flagged as an attack; otherwise it passes as normal. Set-
ting this threshold involves a trade-off between acceptable
false positive and false negative rates where normal content
is flagged as an attack or an attack passes as normal, respec-
tively. To evaluate performance in a threshold-independent
manner using the known labels for each test set, we use the
standard area under the Receiver Operating Characteristic
curve (AUC) metric. This sums the area under the curve
formed by all possible thresholds for the true positive rate
tpr and false positive rate fpr:

tpr = tp
tp + fn

fpr = fp
fp + tn

where tp, tn, fp, and fn are counts of true positives, true
negatives, false positives, and false negatives. AUC is com-
monly approximated by the trapezoidal rule for integrating
the area under the curve formed by the set of (tpr, fpr) pairs
resulting from thresholding.

3.10 Metrics: Fmax

No single metric can emphasize all possible errors equally;
due to its use of the false positive rate, AUC emphasizes
true negatives more heavily (see the denominator of fpr in
the above definition). Alternatives such as the F -measure
combine different metrics, precision and recall, into a single

number:

precision = tp
tp + fp

recall = tpr

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

For a more comprehensive evaluation, we include the Fmax
score (with β = 1) as it places emphasis on false positives
over false negatives. Similar to AUC, this score computes
the F -measure for every possible threshold, affecting the
values of precision and recall, and takes the maximum of
the F -measures over these thresholds. This metric was re-
cently introduced as a more robust, interpretable alternative
to measures such as area under the Precision-Recall curve
(auPR).

3.11 Significance Testing
Hypothesis testing is used to evaluate if the result of an

experiment occurred by random chance. A null model repre-
senting the distribution of statistics for random experiments
is rejected if the test statistic computed for the experiment
of interest falls within the extremes of the null distribution.
The p-value is the probability of observing a value at least
as extreme as the test statistic, assuming the null hypothesis
is true. The null hypothesis is rejected if the p-value falls
below some significance level α. The significance level repre-
sents a calculated risk of falsely rejecting the null hypothesis
when it is in fact true, and so is often set to values of 0.05 or
lower to reduce the chance of false positives. In turn, lower
α values increase the risk of false negatives (accepting the
null hypothesis when it is false). Here we use the standard
α = 0.05 significance level.
The Wilcoxon signed-rank test is a non-parametric statis-

tical hypothesis test for determining if there is a significant
difference between the mean ranks of samples under two dif-
ferent conditions. In this paper, the conditions are the per-
formance of local and global content models. The term non-
parametric indicates there are no underlying assumptions
made about the distribution of samples; this distinguishes
the Wilcoxon test from the better-known Student’s t-test
that performs the same task but for normally distributed
values.
The Friedman test is a non-parametric alternative to anal-

ysis of variance (ANOVA) for measuring differences in con-
ditions using the same subjects. Here, the conditions are the
model types and the subjects are CAD systems of different
size. A single node system represents a non-distributed en-
vironment. In contrast to the better-known ANOVA test,
the Friedman test uses rank transformations analyze non-
normally distributed data and is considered the most appro-
priate method for comparing performance of machine learn-
ing classifiers [12].

4. RESULTS
We focus the presentation of our results on the public

ISCX dataset due to its reproducibility, as well as space
limitations. However, the figures and discussion below also
apply to the Columbia dataset, with the primary difference
being tighter error bounds due to a larger number of sam-
ples and a smaller difference between aggregate and local
supervised content models.

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

AUC F_max

0.7

0.8

0.9

1.0

BF LR RF BF LR RF

Classifier

P
er

fo
rm

an
ce

Model Type Local Global

●

●●

●●●
●

●

●

●
●
●

●
●●●

●

●

●●●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●
●

●

●

●
●

AUC F_max

0.85

0.90

0.95

1.00

BF LR RF BF LR RF

Classifier

P
er

fo
rm

an
ce

Model Type Local Global

Figure 3: Performance of local and global con-
tent models on ISCX (top) and Columbia (bottom)
datasets as measured by 20-fold cross validation
with AUC and Fmax metrics for Logistic Regression
(LR), Random Forest (RF), and Bloom Filter (BF)
classifiers. HTTP request payloads are represented
as 5-grams and subdivided into 25 equally-sized
training sets to simulate cloud application servers
behind a load balancer.

To begin, Figure 3 (top) presents the performance of CAD
for a 25 node system using 5-grams. The AUC and Fmax of
Logistic Regression (LR), Bloom Filter (BF), and Random
Forest classifiers are shown for both the local and global
(aggregate) models. Observe that for both metrics the me-
dian performance of local models is markedly lower, result-
ing in impractical false positive rates, while the median per-
formance of the global models is substantially higher.
Next, Figure 4 is a facet diagram presenting the same

data as Figure 3 (top) where n-gram length varies across
columns and the number of nodes varies across rows. To
simplify this complex figure, Fmax numbers are omitted but
the trends seen in Figure 3 still hold. A broader picture
of performance emerges from the facets, such as the poor
performance of BFs in combination with unigrams (left col-
umn) where global performance actually decreases due to
collisions, while LR and RF are more robust. As one would
expect, local and global performance are identical in a non-
distributed setting (top row). Also observe that as the num-
ber of nodes increase, the performance gap between local
and global models increases since each local model is trained
on less data. The curse of dimensionality’s effect can also
be seen where the jump from trigrams to 5-grams reduces
local performance for BFs with 10 and 25 nodes, suggesting
BFs benefit from more densely populated bit vectors. Over-
all, median global performance remains similar for all three
classifiers for trigrams and 5-grams using 10 or 25 nodes, but
with slightly more variance than the non-distributed setting.
Figure 5 shows the size of local and global models under

varying numbers of nodes and n-gram lengths. The y-axis is
the square root of the actual model size (in KB) to prevent

Unigrams Trigrams 5−grams

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●●

●●●●●●

●
●

●

●

●

●

●

●●●

●●●●●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

1 N
ode (N

on−
D

istributed)
10 N

odes
25 N

odes

BF LR RF BF LR RF BF LR RF

Classifier

P
er

fo
rm

an
ce

 (
A

U
C

)

Model Type Local Global

Figure 4: Classifier performance as a function of n-gram length, node count, and model type. See Section 4
for detailed discussion.

BF LR RF

1000

2000

3000

4000

5000

1000

2000

3000

4000

5000

Local
G

lobal

1 10 25 1 10 25 1 10 25

Number of Nodes

S
qu

ar
e

ro
ot

 o
f M

od
el

 S
iz

e
(K

B
)

N−gram Length Unigrams Trigrams 5−grams

Figure 5: Square root of content model size (in KB) as a function of classifier, node count, and model type.
See Section 4 for detailed discussion.

the large size of the RF from concealing other patterns. First
observe BFs are approximately the same size over all n-gram
lengths, though this size would need to increase to support
even larger n-gram lengths while maintaining an acceptable
false positive rate. LR coefficient vectors grow only slightly
with n-gram length and taper off at n = 5 due to the smaller
size of our dataset, while remaining independent of the num-
ber of nodes. The standout pattern is RF, dominating both
BFs and LR for local and global models. This is unfair to RF
as our simple aggregation method could be further refined
to prune redundant or non-predictive trees to retain a fixed
ensemble size independent of node count. However, given
its large overhead for local models and without a significant
performance gain over simpler classifiers, we feel this result
(as well as its supervised nature) rules out RF as a candidate
for practical CAD implementations. LR has comparable size
and slightly improved performance over BFs, but this minor
advantage is outweighed by its supervised nature as well.
While performance is similar across classifier types, we

wish to evaluate if global aggregation offers statistically sig-
nificant gains over local models for each combination of
n-gram length and node count, excluding the non-distributed
setting where performance is equivalent. This is performed
with the Wilcoxon signed-rank test, a non-parametric hy-
pothesis test for comparing the mean of non-normally dis-
tributed samples between two groups (see Section 3). The
p-value of the test for each model, n-gram length, and node
count combination is given in Table 1, rounded to three
digits. There is indeed a statistically significant difference
between local and global model performance at the α = 0.05
level for every set of parameters.
We next use the Friedman test for repeated measures (see

Section 3) to determine if aggregated CAD models offer sim-
ilar performance to content models in a non-distributed set-
ting under either performance metric. The p-values for AUC
and Fmax are 0.71 and 0.09, respectively, meaning we can-
not reject the null hypothesis that performance is the same
at the standard α = 0.05 cutoff for statistical significance.
Therefore, though one might expect some degradation due
to aggregation, model aggregation effectively closes the per-
formance gap between a 10 or 25 node CAD system and
a single non-distributed CAD node. Observe also that the
lower (but still insignificant) p-value under Fmax picks up
on performance differences better than AUC, as we would
expect from the larger error bars of Fmax in Figure 3.
The above analysis focuses on the public ISCX dataset.

Similar performance is seen with the Columbia dataset where
aggregate models achieve 98.9-99.9% AUC and 97.9-99.4%
Fmax. Figure 3 (bottom) is representative of the primary dif-
ferences between the two datasets. First, error bars are in
much tighter as there is significantly more data for the mod-
els to train on, and performance estimates vary less between
folds as a result. Second, both local and global Bloom Filter
performance are lower in the Columbia dataset. This is due
to the subsampling necessary for comparison to the super-
vised methods; there is roughly 7 times more data that the
Bloom Filters could easily be trained on, but the resulting
n-gram feature matrix for the supervised methods is pro-
hibitively large. Due to the increased diversity of n-grams
in this dataset, subsampling puts BFs at an unfortunate dis-
advantage. Finally, the gap between local and global perfor-
mance for supervised content models is much smaller. Given
this much data, supervised models construct a highly accu-

rate representation of attacks in the training data. However,
it is unlikely their representation will generalize to zero-day
attacks. Bloom Filters have a distinct advantage in this re-
gard (see related work), and the performance gap between
the two approaches is small: 97.8% AUC versus 99.9% be-
tween BFs and LR/RF. Thus, aggregation greatly closes the
gap between supervised and unsupervised content models in
this dataset as well.

5. RELATED WORK
These methods offer basic privacy protection during ag-

gregation, but this is not the primary focus of our work and
more formal approaches exist. Chaudhuri et al. [9] present
bounded, privacy-preserving versions of Logistic Regression
and Support Vector Machines under the ε-differential pri-
vacy model. In the distributed setting, privacy-preserving
modeling of federated datasets is an active area of research
in the biomedical community where patient data stored at
different institutions cannot be exchanged due to federal reg-
ulations. Hall et al. [13] use homomorphic encryption to ap-
ply linear and ridge regression in such settings without shar-
ing intermediate values. Wu et al. [14] propose an alternate
version of the Logistic Regression aggregation scheme given
here with the purpose of learning separate models at each
institution and combining coefficients into a single model to
improve pattern discovery across patients without needing
direct access to the underlying data. Their work further
reinforces the effectiveness of our aggregation method for
linear models.
In the field of anomaly detection, “PAYLoad anomaly de-

tection” (PAYL) is one of the earliest unsupervised learning
algorithms applied to application content [15]. It first es-
timates 1-gram payload byte distributions conditioned on
flow direction, port number, and payload length from train-
ing data. New data is labeled anomalous if the distance
of its byte distributions to those of the training data is be-
yond some threshold. The “Payload Content based Network
Anomaly Detection” algorithm (PCNAD) is a modification
of PAYL to accommodate high speed links by training with
subsets of the payload [16]. Both algorithms are fast and
effective for detecting some abnormal content such as ma-
chine code in the payload of email traffic, but cannot con-
sider broader context such as byte orderings and correlations
between bytes. As a result, they are susceptible to sim-
ple mimicry attacks [4] and have high false positive rates—
problems addressed by the higher order n-grams employed
by the Bloom Filter-based Anagram [3].
Cretu et al. introduced a new approach to training and

sanitizing anomaly detection models called “Sanitizing Train-
ing Data for Anomaly Sensors” (STAND) [8]. Their method
applies the notion of ensemble learning to train multiple nor-
mal models and combine their predictions, an extension of
earlier work by Stolfo et al. [17] in financial fraud detec-
tion. Instead of constructing a single model from the com-
plete training set, the data is split into disjoint sets and
used to train individual micromodels. Each packet is tested
against these micromodels and is labeled normal or abnor-
mal based on a weighted voting scheme. If some threshold
of the micromodels has seen the packet then it is used to
train a sanitized model free of attacks and outliers. Other-
wise, the packet is added to a separate anomalous model.
These anomalous models can be exchanged between collab-
orating sites to reduce poisoning attacks via a process called

Classifier N-gram Length Node Count P-value
Bloom Filter 1 10 0.019
Bloom Filter 1 25 0.041
Bloom Filter 3 10 0.037
Bloom Filter 3 25 0.001
Bloom Filter 5 10 0.008
Bloom Filter 5 25 0.000
Logistic Regression 1 10 0.009
Logistic Regression 1 25 0.000
Logistic Regression 3 10 0.019
Logistic Regression 3 25 0.001
Logistic Regression 5 10 0.002
Logistic Regression 5 25 0.001
Random Forest 1 10 0.003
Random Forest 1 25 0.000
Random Forest 3 10 0.017
Random Forest 3 25 0.001
Random Forest 5 10 0.002
Random Forest 5 25 0.002

Table 1: P-values for a Wilcoxon signed-rank test of performance differences between global and local models
over each combination of classifier, n-gram length, and node count. The results show statistically significant
performance improvements for global models over all parameter combinations at the α = 0.05 level.

cross-sanitization. Also employing ensemble learning tech-
niques, Multiple-Classifier Payload-based Anomaly Detector
(McPAD) [18] combines multiple one-class Support Vector
Machines with diverse feature spaces to detect polymorphic
shellcode contained within packet payloads.
Spectrogram employs a mixture of Markov Chains for con-

tent anomaly detection of web requests [19], directly mod-
eling the distribution of overlapping request n-grams. This
approach is typically exponential (256n) in the n-gram size.
However, this is reduced to linear complexity (M∗(2562∗(n−
1)+M forM chains) using an approximate factorization. In
addition to directly modeling n-gram distributions, Spectro-
gram differs from Anagram in that it focuses on web request
strings instead of the entire payload packet – an approach
later combined with Anagram by Autosense [20] (reviewed
below). In the distributed setting, aggregate Spectrogram
models are not well-defined. In addition, Spectogram does
not permit incremental training and has high computational
overhead.
Each of these content-based sensors were originally de-

signed for single sites. However, several systems aggregate
or correlate alerts from distributed sites. DShield is a cen-
tralized repository of shared alert information. Another sys-
tem called Worminator creates distributed watch lists using
Bloom that are exchanged at a centralized location or by an
overlay network called Whirlpool [21,22]. This enables sites
to detect anomalous packets if a novel attack is widespread,
but in isolation these sites cannot be sure if the resulting
anomalies are false positives.
Though normal traffic is often site-specific, abnormal pack-

ets common across sites are reliable indicators of widespread
attacks. Autosense [20] uses STAND with Anagram to de-
tect such widespread zero-day attacks across collaborating
sites with extremely low false positive rates.
Hadžiosmanović et al. [23] analyze the effectiveness of

n-gram models including PAYL, Anagram, and McPAD with
binary protocols such as SMB and Modbus. They find that

while n-gram models can achieve high detection rates with
binary protocols, this often comes at the cost of prohibitively
high false positive rates. They attribute this weakness to
the high variability of binary protocol payloads and suggest
protocol-specific n-gram analysis to target relevant payload
regions. We take such an approach by examining normal-
ized rather than complete HTTP requests, and anticipate
we would encounter similar difficulties with arbitrary binary
protocols.
Other work has more formally examined methods for com-

bining alerts of multiple intrusion detectors without the dy-
namic pathing problem. Gu et al. [24] propose a decision-
theoretic technique for combining alerts in an IDS ensemble
that may offer better performance than some of the simple
aggregation methods here, though we chose such methods
for their low CPU and network overhead.

6. CONCLUSION
Content anomaly detection has recently proven effective

for zero-day attack detection, especially for remotely collab-
oration sites, while being resistant to mimicry and poisoning
attacks [3]. However, CAD in its current state is less than
ideal for clouds or other distributed systems where each node
observes only a fraction of global traffic due to load balanc-
ing, or environmental constraints such as found in wireless
sensor networks. Content models from each node must be
combined into a single global model and re-distributed in
order to accurately detect application-level attacks present
in packet payloads.
In this paper we demonstrate how various content mod-

els can accurately detect such content-based attacks against
distributed application servers by introducing new model
aggregation techniques. Our methods eliminate the need
for content exchange during aggregation, increasing network
and CPU efficiency while providing varying levels of content
privacy To foster reproducibility, our analysis uses a pub-
licly available IDS dataset containing both application con-

tent and ground truth labels [5], as well as a larger private
dataset collected from Columbia University departmental
webservers.
Using these datasets we evaluate the performance of both

supervised and unsupervised content models including Lo-
gistic Regression, Random Forests, and Bloom Filters. We
show that unsupervised CAD models achieve 97.8% AUC,
approaching the 99.9% AUC of supervised methods while
generalizing to zero-day attacks without needing labeled data.
Using the ISCX dataset we find global aggregation offers sta-
tistically significant performance improvements over local
models, while aggregation primarily benefits unsupervised
Bloom Filters using the larger Columbia dataset. In addi-
tion, due to the small size and comparable performance of
Bloom Filters, we find the potential performance improve-
ments offered by Random Forest models are further out-
weighed by their network and CPU overhead. Bloom Filters
trail behind Logistic Regression slightly in terms of accu-
racy but offer modest savings in network overhead, though
this gap may be further closed by sparse representations of
coefficient vectors in combination with L1-norm or LASSO
regularization.
Most importantly, using our aggregation methods there

is no statistically significant performance difference (AUC
or Fmax) between non-distributed and distributed CAD en-
vironments, nor a significant difference between supervised
and unsupervised aggregate models. Thus, aggregated unsu-
pervised CAD models are as effective as either supervised or
unsupervised models in both distributed and non-distributed
settings, while maintaining the advantages of unsupervised
models for deployment in real-world networks.
Motivated by, but not limited to, the increasing risk posed

by high-value assets in the cloud, these results demonstrate
that CAD sensors offer efficient and accurate attack detec-
tion in distributed environments and may complement other
lightweight sensors to form a distributed attack detection
infrastructure resilient against a broad class of zero-day ap-
plication attacks.

7. ACKNOWLEDGMENTS
This work was supported by DARPA through Contract

FA8650-11-C-7190. Any opinions, findings, conclusions or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the U.S. Government
or DARPA.

8. REFERENCES
[1] H. Kisker, P. Matzke, S. Ried, and M. Lisserman,

“Forrsights: The Software Market In Transformation,
2011 And Beyond,” tech. rep., Forrester Research,
2011.

[2] DARPA, “I2O Mission-Oriented Resilient Clouds,”
tech. rep., 2011.

[3] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A
Content Anomaly Detector Resistant to Mimicry
Attack,” in Proceedings of the 9th Symposium on
Recent Advances in Intrusion Detection, pp. 226–248,
2006.

[4] P. Fogla and W. Lee, “Evading Network Anomaly
Detection Systems: Formal Reasoning and Practical
Techniques,” in Proceedings of the 13th ACM

Conference on Computer and Communications
Security, pp. 59–68, 2006.

[5] A. Shiravi, H. Shiravi, M. Tavallee, and A. A.
Ghorbani, “Towards Developing a Systematic
Approach To Generate Benchmark Datasets for
Intrusion Detection,” Computers & Security, vol. 31,
no. 3, pp. 357–374, 2012.

[6] M.-J. Lin and K. Marzullo, “Directional Gossip:
Gossip in a Wide Area Network,” in Proceedings of the
3rd European Dependable Computing Conference,
pp. 364–379, 1999.

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding
with Allowable Errors,” Communications of the ACM,
vol. 13, no. 7, pp. 422–426, 1970.

[8] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo,
and A. D. Keromytis, “Casting out Demons:
Sanitizing Training Data for Anomaly Sensors,” in
Proceedings of the 2008 IEEE Symposium on Security
and Privacy, pp. 81–95, 2008.

[9] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate,
“Differentially Private Empirical Risk Minimization,”
Journal of Machine Learning Research, vol. 12,
pp. 1069–1109, 2011.

[10] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[11] L. Breiman, “Random Forests,” Machine Learning,

vol. 45, no. 1, pp. 5–32, 2001.
[12] J. Demšar, “Statistical Comparisons of Classifiers over

Multiple Data Sets,” Journal of Machine Learning
Research, vol. 7, pp. 1–30, 2006.

[13] R. Hall, S. E. Fienberg, and Y. Nardi, “Secure
Multiple Linear Regression Based on Homomorphic
Encryption,” Journal of Official Statistics, vol. 27,
no. 4, pp. 669–691, 2011.

[14] Y. Wu, X. Jiang, J. Kim, and L. Ohno-Machado,
“Grid Binary LOgistic REgression (GLORE):
Building Shared Models Without Sharing Data,”
Journal of the American Medical Informatics
Association, vol. 19, no. 5, pp. 758–764, 2012.

[15] K. Wang and S. J. Stolfo, “Anomalous Payload-Based
Network Intrusion Detection,” in Proceedings of the
7th Symposium on Recent Advances in Intrusion
Detection, pp. 203–222, 2004.

[16] S. A. Thorat, A. K. Khandelwal, B. Bruhadeshwar,
and K. Kishore, “Payload Content Based Network
Anomaly Detection,” in Proceedings of the 1st
International Conference on Applications of Digital
Information and Web Technologies, pp. 127–132, 2008.

[17] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and
P. K. Chan, “Cost-based Modeling for Fraud and
Intrusion Detection: Results from the JAM Project,”
in Proceedings of the DARPA Information
Survivability Conference and Exposition, vol. 2,
pp. 130–144, 2000.

[18] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and
W. Lee, “McPAD : A Multiple Classifier System for
Accurate Payload-based Anomaly Detection,”
Computer Networks, vol. 53, no. 6, pp. 864–881, 2009.

[19] Y. Song, A. D. Keromytis, and S. J. Stolfo,
“Spectrogram: A Mixture-of-Markov-Chains Model
for Anomaly Detection in Web Traffic,” in Proceedings
of the 16th Annual Network and Distributed System
Security Symposium, 2009.

[20] N. Boggs, S. Hiremagalore, A. Stavrou, and S. J.
Stolfo, “Cross-Domain Collaborative Anomaly
Detection: So Far Yet So Close,” in Proceedings of the
14th Symposium on Recent Advances in Intrusion
Detection, pp. 142–160, 2011.

[21] M. E. Locasto, J. J. Parekh, S. J. Stolfo, A. D.
Keromytis, T. Malkin, and V. Misra, “Collaborative
Distributed Intrusion Detection,” tech. rep., Columbia
University, 2004.

[22] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and
S. J. Stolfo, “Towards Collaborative Security and P2P
Intrusion Detection,” in Proceedings of the 6th Annual
Information Assurance Workshop, pp. 333–339, 2005.

[23] D. Hadžiosmanović, L. Simionato, D. Bolzoni,
E. Zambon, and S. Etalle, “N-Gram against the
Machine: On the Feasibility of the N-Gram Network
Analysis for Binary Protocols,” in Proceedings of the
15th International Conference on Research in Attacks,
Intrusions, and Defenses, pp. 354–373, 2012.

[24] G. Gu, A. A. Cárdenas, and W. Lee, “Principled
Reasoning and Practical Applications of Alert Fusion
in Intrusion Detection Systems,” in Proceedings of the
2008 ACM Symposium on Information, Computer and
Communications Security, pp. 136–147, 2008.

