Toward Cost-Sensitive Modeling for Intrusion Detectioman

Response
Wenke Lee Wei Fan
College of Computing IBM T.J.Watson Research Center
Georgia Institute of Technology Hawthorne, NY 10532
801 Atlantic Drive Georgia, GA 30332-0280 weifan@us.ibm.com
wenke@cc.gatech.edu
Matthew Miller and Salvatore J. Stolfo Erez Zadok
Computer Science Department Computer Science Department
Columbia University State University of New York at Stony Brook
1214 Amsterdam Avenue Stony Brook, NY 11794-4400
New York, NY 10027 ezk@cs.sunysb.edu

{mmiller, sal @cs.columbia.edu

Abstract

Intrusion detection systems (IDSs) must maximize thezatitin of security goals while minimizing
costs. In this paper, we study the problem of building cestsgive intrusion detection models. We
examine the major cost factors associated with an IDS, wihidhde development cost, operational cost,
damage cost due to successful intrusions, and the cost afahand automated response to intrusions.
These cost factors can be qualified according to a definedkaiaonomy and site-specific security
policies and priorities. We define cost models to formulh&stobtal expected cost of an IDS, and present
cost-sensitive machine learning techniques that can pedetection models that are optimized for
user-defined cost metrics. Empirical experiments showahatost-sensitive modeling and deployment

techniques are effective in reducing the overall cost afigibn detection.

1 Introduction

Accompanying our growing dependency on network-based atengystems is an increased importance
on protecting our information systems. Intrusion detecilD), the process of identifying and respond-

ing to malicious activity targeted at computing and netvimgkresources [2], is a critical component of

infrastructure protection mechanisms.

A natural tendency in developing an intrusion detectiontespg(IDS) is trying to maximize iteechnical
effectiveness This often translates into IDS vendors attempting to usgebforce to correctly detect a
larger spectrum of intrusions than their competitors. Hmugethe goal of catching all attacks has proved
to be a major technical challenge. After more than two dezadeesearch and development efforts, the
leading IDSs still have marginal detection rates and hi¢gefalarm rates, especially in the facestéalthy
or novelintrusions [1, 17]. This goal is also impractical for IDS t®pnent, as the constraints on time (i.e.,
processing speed) and resources (both human and compuatgf)aoome overwhelmingly restrictive. An
IDS usually performgassive monitoringf network or system activities rather thantive filtering(as is
the case with Firewalls). It is essential for an IDS to keepmitp the throughput of the data stream that it
monitors so that intrusions can be detected in a timely madneeal-time IDS can thus become vulnerable
to overload attack$22]. In such an attack, the attacker first directs a huge ataiumalicious traffic at the
IDS (or some machine it is monitoring) to the point that it cemlonger track all data necessary to detect
every intrusion. The attacker can then successfully erettigt intended intrusion, which the IDS will fail
to detect. Similarly, an incident response team can be @aadged by intrusion reports and may be forced
to raise detection and response thresholds [7], resultingdl attacks being ignored. In such a situation,
focusing limited resources on the most damaging intrusimasmore beneficial and effective approach.

A very important but often neglected facet of intrusion détm is itscost-effectivenessr cost-benefit
trade-off. An educated decision to deploy a security meishaisuch as an IDS is often motivated by the
needs of security risk management [5, 10, 21]. The objectian IDS is therefore to provide protection to
the information assets that are at risk and have value togamimation. An IDS needs to be cost-effective in
that it should cost no more than the expected level of losa fntrusions. This requires that an IDS consider
the trade-off among cost factors, which at the minimum sthindlude development cost, the cost of damage
caused by an intrusion, the cost of manual or automatic resspto an intrusion, and the operational cost,

which measures constraints on time and computing resaufoegxample, an intrusion which has a higher

response cost than damage cost should usually not be aciacapond simple logging.

Currently these cost factors are, for the most part, ignasegnwanted complexities in the development
process of IDSs. This is caused by the fact that achievingsoreble degree of technical effectiveness is
already a challenging task, given the complexities of t&dagtwork environments and the manual effort of
knowledge-engineering approaches (e.g., encoding esxpes). Some IDSs do try to minimize operational
cost. For example, the Bro [22] scripting language for dpa intrusion detection rules does not support
f or -loops because iteration through a large number of cororexis considered time consuming. However,
we do not know of any IDS that considers any other cost factdfsese cost factors are not sufficiently
considered in the deployment of IDSs either because marmanaations are not educated about the cost-
benefits of security systems, and analyzing site-speciitfastors is very difficult. Therefore, we believe
that the security community as a whole must study the cdstiefe aspects of IDSs in greater detail to help
make intrusion detection a more successful technology.

We have developed a data mining framework for building sitya detection models in an effort to au-
tomate the process of IDS development and lower its devatopieost. The framework uses data mining
algorithms to compute activity patterns and extract ptedideatures, and then applies machine learning
algorithms to generate detection rules [14, 15]. Resulisifthe 1998 DARPA Intrusion Detection Eval-
uation showed that our ID model was one of the best perforrafragl the participating systems, most of
which were knowledge-engineered [17].

In this paper, we examine the relevant cost factors, costelapednd cost metrics related to IDSs, and
report the results of our current research in extending atat chining framework to build cost-sensitive
models for intrusion detection. We propose to use costitbenmachine learning techniques that can auto-
matically construct detection models optimized for oMerast metrics instead of mere statistical accuracy.

We do not suggest that accuracy be ignored, but rather ttsitfactors beincludedin the process
of developing and evaluating IDSs. Our contributions arethe specific cost models and cost metrics

described, but rather the principles of cost analysis andietirg for intrusion detection.

2 Cost Factorsand Metrics

In order to build cost-sensitive ID models, we must first usthnd the relevant cost factors and the metrics
used to define them. Borrowing ideas from the related fieldsatfit card and cellular phone fraud detection,
we identify the following major cost factors related to irgion detection: damage cost, response cost, and
operational cost. Damage cost (DCost) characterizes tbhem@of damage to a target resource by an attack
when intrusion detection is unavailable or ineffective. spanse cost (RCost) is the cost of acting upon an
alarm or log entry that indicates a potential intrusion. @genal cost (OpCost) is the cost of processing the
stream of events being monitored by an IDS and analyzingdtigitees using intrusion detection models.
We will discuss these factors in greater detail in Secti@n 2.

Cost-sensitive models can only be constructed and evdlwaten cost metrics are given. The issues
involved in the measurement of cost factors have been stuighe computer risk analysis and security
assessment communities. The literature suggests thatpsteo fully quantify all factors involved in cost
modeling usually generate misleading results because Ihtactors can be reduced to discrete dollars
(or some other common unit of measurement) and probabilje6, 9, 10, 13]. It is recommended that
qualitative analysis be used to measure riative magnitude®f cost factors. It should also be noted
that cost metrics are often site-specific because eachipatgi@m has its own security policies, information

assets, and risk factors [21].

2.1 Attack Taxonomy

An attack taxonomy is essential in producing meaningfut owetrics. The taxonomy groups intrusions into
different types so that cost measurement can be perfornmazhfegories of similar attacks. Intrusions can
be categorized and analyzed from different perspectivasddvist and Jonsson introduced the concept of
thedimensionof an intrusion and used several dimensions to classifusiins [16]. Theantrusion results

dimension categorizes attacks according to their effexts,(whether or not denial-of-service is accom-

Table 1:

An Attack Taxonomy for DARPA Data

Main Category| Description Sub-Category | Description Cost

(by results) (by techniques)

1. ROOT illegal root ac-| 1.1 local by first logging in as a legitiy DCost=100
cess is obtained mate user on a local system, e.gRCost=40

buffer overflowon local system
programs such asject

1.2 remote from a remote host, e.g., bufferDCost=100
overflow of some daemon run-RCost=60
ning suid root.

2. R2L illegal user ac-|| 2.1 single a single event, e.g., guessindCost=50
cess is obtaineg passwords. RCost=20
from outside.

2.2 multiple multiple events, hosts, or days,DCost=50
e.g., themultihopattack. RCost=40

3. DOS Denial-of- 3.1 crashing using a single malicious eventDCost=30
Service of target (or a few packets) to crash a sysRCost=10
is accomplished. tem, e.g., theeardropattack.

3.2 consumption using a large number of eventsDCost=30
to exhaust network bandwidth orRCost=15
system resources, e.gynflood

4. PROBE information 4.1 simple many of probes within a short DCost=2
about the target period of time, e.g., fasport- | RCost=5
is gathered. scanning

4.2 stealth probe events are distributedDCost=2
sparsely across a long time win-RCost=7
dows, e.g. slowort-scanning

plished). It can therefore be used to assess the damagentbstsponse cost. Thetrusion techniques
dimension categorizes attacks based on their methods r@sgurce or bandwidth consumption). It there-
fore affects the operational cost and the response cosb, &lgintrusion targetdimension categorizes
attacks according to the resource being targeted and affeth damage and response costs.

Our attack taxonomy is illustrated in Table 1, and categsrintrusions that occur in the DARPA Intru-
sion Detection Evaluation dataset, which was collectedsimaulated military environment by MIT Lincoln
Lab [17]. In this dataset, each event to be monitored is aortwonnection, and the resources being at-
tacked are mainly the network services (elttp, smtp etc.) and system programs on a particular host in
the network. We use the taxonomy described in Table 1 to fatgtgorize the intrusions occurring in the

dataset into ROOT, DOS, R2L, and PROBE, based on their intrugsults. Then within each of these

categories, the attacks are further partitioned by thenigaes used to execute the intrusion. The ordering
of sub-categories is of increasing complexity of the attameihod. Attacks of each sub-category can be fur-
ther partitioned according to the attack targets. For siitpl the intrusion targetdimension is not shown.
This table also shows the damage cost (DCost) and respors€R®ost) of each intrusion category. The
operation cost (OpCost) is not shown because it is measnrdifférent units. These cost factors will be

discussed later in the paper.

2.2 Cost Factors

When measuring cost factors, we only consider individutdcis detectable by IDSs. For example, a
coordinated attack, or aattack scenaripthat involves port-scanning a network, gaining userileeeess

to the network illegally, and finally acquiring root accea®uld normally be detected and responded to by
an IDS as three separate attacks because most IDSs areedegigespond quickly to events occurring in

real-time. It is therefore reasonable to measure the atimchvidually. Researchers are actively studying
algorithms and systems for detecting complex attack s@mnaAs part of our future work, we will study

the cost-sensitive aspects of detection for attack sagnari

2.2.1 Damage Cost

There are several factors that determine the damage castadfaek. Northcutt usesiticality andlethality
to quantify the damage that may be incurred by some intrus@vior [21].

Criticality measures the importance, or value, of the taojen attack. This measure can be evaluated
according to a resource’s functional role in an organizatipits relative cost ofeplacementunavailability,
and disclosure[10]. Similar to Northcutt's analysis, we assign 5 points fisewalls, routers, or DNS
servers, 4 points for mail or Web servers, 2 points for UNIXrkatations, and 1 point for Windows or
DOS workstations. Lethality measures the degree of damtzagecbuld potentially be caused by some

attack. For example, a more lethal attack that helped andatrgain root access would have a higher

damage cost than if the attack gave the intruder local usersac Other damage may include the discovery
of knowledge about network infrastructure or preventing dffering of some critical service. For each
main attack category in Table 1, we define a relative lethaliale and use it as thmse damage cqsbr
basep. When assigning damage cost according to the criticalith@target, we can use tirgrusion target
dimension. Using these metrics, we can define the damagetaatattack targeted at some resource as
criticality x basep. For example, a DOS attack targeted at a firewall Rd%st = 150, while the same
attack targeted at a Unix workstation hag€'ost = 60.

In addition to criticality and lethality, we define tipgogressof an attack to be a measure of how suc-
cessfully an attack is in achieving its goals. For examplegnial-of-Service (DOS) attack via resource or
bandwidth consumption (e.g. SYN flooding) may not incur dgeneost until it has progressed to the point
where the performance of the resource under attack isrgjddisuffer. The progress measure can be used
as an estimate of the percentage of the maximum damage evsthibuld be accounted for. That is, the
actual cost igrogress x criticality x basep. However, in deciding whether or not to respond to an attack,
it is necessary to compare the maximum possible damage @bsthe response cost. This requires that we

assume a worst-case scenario in whichgress = 1.0.

2.2.2 Response Cost

Response cost depends primarily on the type of responseamisats being used. This is usually determined
by an IDS’s capabilities, site-specific policies, attacpetyand the target resource [5]. Responses may be
either automated or manual, and manual responses willgleave a higher response cost.

Responses to intrusions that may be automated include tlosvifng: termination of the offending
connection or session (either killing a process or regetimetwork connection), rebooting the targeted
system, recording the session for evidence gathering pagpand further investigation, or implementation
of a packet-filtering rule [2, 21]. In addition to these resges, a notification may be sent to the administrator

of the offending machine via e-mail in case that machine wa#ficompromised. A more advanced response

which has not been successfully employed to date couldvauvible coordination of response mechanisms
in disparate locations to halt intrusive behavior closdts@ource.

Additional manual responses to an intrusion may involvéherrinvestigation (perhaps to eliminate ac-
tion against false positives), identification, containpenadication, and recovery [21]. The cost of manual
response includes the labor cost of the response team, ¢hefuthe target, and any other personnel that
participate in response. It also includes any downtime egéar repairing and patching the targeted system
to prevent future damage.

We estimate the relative complexities of typical resporisesach attack type in Table 1 in order to
define the relativébase response cogir baser. Again, we can take into account the criticality of the dttac
target when measuring response cost. That is, the cesiti®ality x baser. In addition, attacks using
simpler techniques (i.e., sub-categorie$ in our taxonomy) generally have lower response costsriiae

complex attacks (i.e., sub-categorieg), which require more complex mechanisms for effectigpomse.

2.2.3 Operational Cost

The main cost inherent in the operation of an IDS is the amotitiine and computing resources needed
to extract and test features from the raw data stream thaing) bnonitored. We associate OpCost with
time because a real-time IDS must detect an attack whildritigogress and generate an alarm as quickly
as possible so that damage can be minimized. A slower IDShatses features with higher computational
costs should therefore be penalized. Even if a computirgures has a “sunken cost” (e.g., a dedicated IDS
box has been purchased in a single payment), we still assige sost to the expenditure of its resources as
they are used. If a resource is used by one task, it may notduehysanother task at the same time. The
cost of computing resources is therefore an important fastprioritization and decision making.

Some features cost more to gather than others. Howeveliecdettures are often more informative

for detecting intrusions. For example, features that erarsvents across a larger time window have more

For simplicity, we omit the discussion of personnel cosblwed in administering and maintaining an IDS.

information available and are often used for “correlatiolgsis [2]” in order to detect extended or coor-
dinated attacks such as slow host or network scans [5]. Ctatiqu of these features is costly because of
their need to store and analyze larger amounts of data.

Based on our extensive experience in extracting and cantistgupredictive features from network audit

data [14], we classify features into four relative levelssdd on their computational costs:

Level 1 features can be computed from the first packet, dgservice

e Level 2 features can be computed at any point during the fiteeconnection, e.g., theonnection
state(SYNWAIT, CONNECTED, FINWAIT,etc.).

e Level 3 features can be computed at the end of the conneat&ing only information about the
connection being examined, e.g., téal number of bytes sent from source to destination

e Level 4 features can be computed at the end of the connebtibnequire access to data of potentially

many other prior connections. These are the temporal atigtistal features and are the most costly

to compute. The computation of these features may requitevaf the lower level (i.e., levels 1, 2,

and 3) features.

We can assign relative magnitudes to these features angdadiheir computational costs. For example,
level 1 features may cost 1, level 2 features may cost 5, [@¥ehtures may cost 10, and level 4 features
may cost 100. These estimations have been verified empjricgihg a prototype system for evaluating our

ID models in real-time that has been built in coordinatiothviNetwork Flight Recorder [20].

3 Cost Models

A cost model formulates the total expected cost of intrusietection. It considers the trade-off among all
relevant cost factors and provides the basis for makingapjate cost-sensitive detection decisions. We
first examine the cost trade-off associated with each plessilicome of observing some eventvhich may

represent a network connection, a user's session on a systesame logical grouping of activities being

9

monitored. In our discussion, we say tkat (a,p,) is an event described by the attack typ@vhich can
be normalfor a truly normal event), the progrepsof the attack, and the target resourceThe detection
outcome ok is one of the following: false negative (FN), false positii#®), true positive (TP), true negative
(TN), or misclassified hit. The costs associated with thageames are known ansequential costs
(CCost), as they are incurred as a consequence of prediatioinare outlined in Table 2.

FN Costis the cost of not detecting an attack, and is always incuryes/stems that do not install IDSs.
When an IDS falsely decides that a connection is not an aétadldoes not respond to the attack, the attack
will succeed, and the target resource will be damaged. Th€&41 is therefore defined as the damage cost
associated with evert or DCostg).

TP Costis incurred in the event of a correctly classified attack, emwdlves the cost of detecting the
attack and possibly responding to it. To determine whetbgpaonse will be takerRCost and DCost must
be considered. If the damage done by the attack to reseusckess than RCost, then ignoring the attack
actually reduces the overall cost. Therefore, if RCast>- DCosl{e), the intrusion is not responded to
beyond simply logging its occurrence, and the loss is DEpdiRCoste) < DCosl{e), then the intrusion
is acted upon and the loss is limited to RCept(In reality, however, by the time an attack is detected
and response ensues, some damage may have incurred. Taotaforoihis, TP cost may be defined as
RCoste) + ¢;DCoste), wheree; € [0, 1] is a function of the progregsof the attack.

FP Costis incurred when an event is incorrectly classified as arlatize., where = (normal,p,r) is
misidentified ag’ = (a,p’,r) for some attack:. If RCoste’) < DCos{¢’), a response will ensue and the
response cost, RCost], must be accounted for as well. Also, since normal acigsitnay be disrupted due
to unnecessary response, false alarms should be pendtzedur discussion, we use PCe3ti{o represent
the penalty cost of treating a legitimate evemts an intrusion. For example dfis aborted, PCost} can be
the damage cost of a DOS attack on resoutdeecause a legitimate user may be denied access to

TN Costis always 0, as itis incurred when an IDS correctly decidasdh event is normal. We therefore

bear no cost that is dependent on the outcome of the decision.

10

Table 2: Model for Consequential Cost

Outcome Consequential CosECost(e) Condition

Miss (False Negative;N) DCoste)

False Alarm (False PositiveéP) | RCoste’) + PCoste) if DCost(e') > RCost¢’)
0 if DCost(e’) < RCost¢’)

Hit (True Positive,TP) RCoste) + ¢;DCoste), 0 < ¢ <1 | if DCost(e) > RCoste)
DCostg) if DCost(e) < RCostg)

Normal (True Negativel N) 0

Misclassified Hit RCoste’) + eaDCoste), 0 < e < 1 | if DCost(e’) > RCostg')
DCostg) if DCost(e’) < RCost¢’)

Misclassified Hit Cosis incurred when the wrong type of attack is identified, i@.evente = (a,p,)
is misidentified ag’ = (d/,p’,r). If RCos{e’) < DCos{¢’), a response will ensue and RCe8tfieeds to
be accounted for. Since the response taken is effectivastgatitack type:’ rather tharz, some damage
cost ofeaDCoste) will be incurred due to the true attack. Here e [0, 1] is a function of the progregs
and the effect of the response intendeddoon a.

We can now define the cost model for an IDS. When evaluatindd&dver some labeled test sBt
where each event, € FE, has a label ofiormalor one of the intrusions, we define the cumulative cost of the
IDS as follows:

CumulativeCost(E) = Z(CCost(e) + OpCost(e)) 1)
eck

where CCosk), the consequential cost of the prediction by the IDS 0is defined in Table 2.

It may not always be possible to fold damage and response aust the same measurement unit,
instead, each should be analyzed in its own relative scakemWst, however, compare and then combine
the two so that we can compute CCa}for use in the calculation of CumulativeCost in Equation 1.

One way is to decide first under what conditions to not resgorghrticular intrusions. For example,
assuming that probing attacks should not be responded tthahthe damage cost for probing is 2, then
the response cost for probing must be greater, say, 20. @iwiif the attack type with the lowest damage
cost should not be ignored, then the corresponding lowsgbrese cost should be a smaller value. Once

a starting value is defined, remaining values can be compmgearding to the relative scales discussed in

11

Section 2.2.

OpCosté) in Equation 1 can be computed as the sum of the computatemss of all the features
used during rule checking. Since OpCe¥t#nd CCost) use two different measurement units and there
is no possibility of comparing the two, as with damage cost eesponse cost, we can use Equation 1
at a conceptual level. That is, when evaluating IDSs, we earsider both the cumulative OpCost and
cumulative CCost, but actual comparisons are performearatgly using the two costs. This inconvenience
cannot be overcome easily unless all cost factors are eegb using a common measurement unit, or
there is a reference or comparison relation for all the factSite-specific policies can be used to determine

how to uniformly measure these factors.

4 Cost-Sensitive Modeling

Similar to risk analysis [3], cost-sensitive modeling fotrusion detection must be performed periodically
because cost metrics must take into account changes imiafmm assets and security policies. It is there-
fore important to develop tools that can automatically piadcost-sensitive models for given cost metrics.
We have developed and evaluated the use of many machinénganethods for reducing the Cumu-
lativeCost of intrusion detection [12, 18]. Because of gpagnstraints, in this section and Section 5 we
describe and evaluate the particular methods which haweprmost effective in building cost-sensitive

models.

4.1 Reducing Operational Cost

In order to reduce OpCost, ID models need to use low costriemas often as possible while still maintain-
ing a desired level of accuracy. Our approach is to build ipleliD models, each of which uses different
sets of features at different cost levels. Low cost modadsahways evaluated first by the IDS, and high

cost models are used only when the low cost models cannot mgkediction with sufficient accuracy.

12

We implement this multiple-model approach using RIPPERd81le induction algorithm. However, other
machine learning algorithms or knowledge-engineeringhoat may be used as well.

Given a training set in which each event is labeled as eitbemal or some intrusion, RIPPER builds
an orderedor unorderedruleset. Each rule in the ruleset uses the most discrimigdgature values for
classifying a data item into one of the classes. A rule ctsmsisconjunctions of feature value comparisons,
and if the rule evaluates twue, then a prediction is made. An example rule for predictiegrdrop is
“if number_bad_fragments > 2 and protocol = udp then teardrop.” Before discussing the details of
our approach, itis necessary to outline the advantagesisadv@ntages of ordered and un-ordered rulesets.

Ordered RulesetsAn ordered ruleset has the forifir, then ¢; elseif r, then io,. .., else default,
wherer,, is a rule (its conditions) and, is the class label predicted by that rule. Before learningHER
first orders the classes by one of the following heuristiegreq, which orders by increasing frequency in
the training data— freq, by decreasing frequency;ven, which is a user-defined orderingidl, which
uses the minimal description length to guess an optimakmgl¢l9] . After arranging the classes, RIPPER
finds rules to separai@ass; from classeslasso, ..., class,, then rules to separatéasss from classes
classs, ..., classy, and so on. The final clasdass,,, will become the default class. The end result is that
rules for a single class will always be grouped togetherrtlies forclass; are possibly simplified, because
they can assume that the class of the example is odle.f;, . . ., class,. If an example is covered by rules
from two or more classes, this conflict is resolved in favothef class that comes first in the ordering.

An ordered ruleset is usually succinct and efficient. Ev#dunaof an entire ordered ruleset does not
require each rule to be tested, but proceeds from the topeaidbkset to the bottom until any rule evaluates
to true. The features used by each rule can be computed one by onalaaten proceeds. The operational
cost to evaluate an ordered ruleset for a given event is tlaé ¢ost of computing unique features until
a prediction is made. For intrusion detectiondreq ruleset is usually lowest in operational cost and
accurately classifies normal events. This is because theudles of the ruleset identify normal, which is

usually the most frequently occurring class. On the conti@#-freq ruleset would most likely be higher

13

in operational cost but more accurate in classifying intms because the ruleset partitions intrusions from
normal events early in its evaluation, andrmalis the final default classification. Depending on the class
ordering, the performances gfven andmdl will lie between those of- freq and+ freq.

Un-ordered RulesetsAn un-ordered ruleset has at least one rule for each classhame are usually
many rules for frequently occurring classes. There is aldefault class which is used for prediction when
none of these rules are satisfied. Unlike ordered rulesbtsyles are evaluated during prediction and
conflicts are broken by using the most accurate rule. Unretdrilesets, in general, contain more rules and
are less efficient in execution thanfreq and+ freq ordered rulesets, but there are usually several rules of
high precision for the most frequent class, resulting irueaie classification of normal events.

With the advantages and disadvantages of ordered and eredrdulesets in mind, we propose the

following multiple ruleset approach:

e We first generate multiple training séfs, T, T3, T using different feature subsefs, uses only cost
1 featuresI’, uses features of costs 1 and®; uses features of costs 1, 5, and 10; diduses all
available features of costs 1, 5, 10, and 100.

e Rulesetsky, Ry, R3, R4 are learned using their respective training s&lsis learned as either fregq
or — freq ruleset for efficiency, as it may contain the most costlydezd. R,, R, R3 are learned as
either— freq or un-ordered rulesets, as they will contain accurate ifoleslassifying normal events
and we filter normal as early as possible to reduce operattmst Given andmdl might be used,
but their performance would not be better.

e A precision measuremept is computed foevery rule r, except for the rules iR,2.

e A threshold valuer; is obtained for every class, and determines the toleraleleigpon required for a

prediction to be made in execution.

In real-time execution, the feature computation and ruéduation proceed as follows:

2precision describes how accurate a prediction i i§ the set of predictions with labeland 1V is the set of instances with

labeli in the data set, by definitiop, = |P|r}1)1|/V\)

14

e R, is evaluated and a predictians made by some rule.

e If p, > 7;, the prediction: is final. In this case, no more features are computed and tteray
examines the next event. Otherwise, additional featurqgined by R, are computed and; is
evaluated.

e This process continues until a final prediction is made. Maduation of R, always produces a final

prediction becaus®, uses all features.

The precision and threshold values used by the multiple haq@@oach can be obtained during model
training from the training set, or can be computed using arsee hold-out validation set. The precision of
a rule can be obtained easily from the positive and negativets of a rule:ﬁ. Threshold values are set
to the precisions of the rules in a single ruleset using aliiees R,) for each class in the chosen dataset,

as we do not want to make less precise classificatio jiR,, R3 than would be made using,.

4.1.1 Real-Timelmplementation

We have implemented a system that is capable of evaluatired af £ost-sensitive models in real-time.
This system uses a sensor for extracting light-weight, aniive,” features (usually levels 1 and 2) from
raw network traffic data. Higher level feature computatiod enodel evaluation are offloaded to a separate
entity, “Judge.” The motivation for offloading this compiité and evaluation is to avoid overburdening the
sensor (in this case a packet sniffing engine), which musblegeta monitor very high-bandwidth networks.
Judge uses models computed using the techniques desaritfetiprevious section.

Higher level features are computed and models are evalbgtéddge at different points in a connection
as more primitive features become available. The sensomid Judge of new feature values and updates
to feature values that are maintained by Judge throughoah@ection’s existence, as they become avail-
able. Such notifications happen whenever there is a charte tonnection’s state (e.g., a connection has
progressed from SYNVAIT to CONNECTED). Sensors also update certain featureeswhenever an

“exception” event is observed. Exceptions are occurremdgsh should immediately update the value of

15

a specific feature. For example, if two fragmented packetsecim and the offsets for defragmentation are
correct, thébad frag_offsetfeature must be updated immediately.

Upon each state change and exception event, Judge compaust bf primitive features that are avail-
able for the given connectio., with the set of primitive features used by all higher lewatfires in each
ID model, Fg,. If for any ¢, Fr, C F¢, then higher level features requiring the primitive featum £, are
computed and the modél; is evaluated. The logic for determining when a predictiomade is the same
as is described in the previous section.

Thus far, we have implemented this system using NFR as tteagdrowever, the protocol for commu-
nication between the sensor and Judge allows any sensoh wkiiacts features from a data stream to be

used. We are in the process of adapting a number of host-Basedrs to serve as Judge clients.

4.2 Reducing Consequential Cost

A traditional IDS that does not consider the trade-off betw®&Cost and DCost will attempt to respond
to every intrusion that it detects. As a result, the consetiglecost for FP, TP, and misclassified hits will
always include some response cost. We use a cost-senstii@ah module to determine whether response
should ensue based on whether DCost is greater than RCost.

The decision module takes as input an intrusion report geeeby the detection module. The report
contains the name of the predicted intrusion and the namteedfarget, which are then used to look up the
pre-determined DCost and RCost. If DCostRCost, the decision module invokes a separate module to
initiate a response; otherwise, it simply logs the intragieport.

The functionality of the decision module can also be impleteé using a data re-labeling technique
such as MetaCost [11], which re-labels intrusions with DIGosRCost tonormal so that the generated
model will not contain rules for predicting these intrusiat all. We have experimented with such a mech-
anism [12] and have found that models trained on these datase=much smaller and incur less operational

cost. However, reducing consequential cost using a pdstiien decision module eliminates the time

16

consuming need to re-train models when cost factors change.

5 Experiments

Our experiments use data that was distributed by the 1998R2ARtrusion Detection Evaluation Program.
The data was gathered from a military network with a wideetsrdf intrusions injected into the network
over a period of 7 weeks. The details of our data mining fraorkvior data pre-processing and feature
extraction is described in our previous work [15]. We use&o86f the data for training the detection
models. The training set was also used to calculate thegmwacof each rule and the threshold value for

each class label. The remaining 20% were used as a test gsafaation of the cost-sensitive models.

5.1 Measurements

We measure expected operational and consequential costs Experiments. The expected average op-

OpCost(e)

erational cost per event over the entire test set is defin K

. In all of our reported results,
OpCost(e) is computed as the sum of the feature computation costs ofmjue features used by all rules
evaluated until a prediction is made for eventf any level 3 features (of cost 100) are used at all, theisost
counted only once. This is done because a natural optirizafirule evaluation is to compute all statistical
and temporal features in one iteration through the eveaibdse.

For each event in the test set, its CCost is computed as falldlhe outcome of the prediction (i.e.,
FP, TP, FN, TN, or misclassified hit) is used to determine theesponding conditional cost expression
in Table 2; the relevant RCost, DCost, and PCost are then tasedmpute the appropriate CCost. The
CCost for all events in the test set are then summed to mettaieCCost as reported in Section 5.2. In
all experiments, we set; = 0 andes = 1 in the cost model of Table 2. Setting = 0 corresponds

to the optimistic belief that the correct response will becassful in preventing damage. Setting= 1

corresponds to the pessimistic belief that an incorregtaiese does not prevent the intended damage at all.

17

Table 3: Average OpCost Per Connection

- [£E+- ———C + [xE£++ ———F
OpCost|[128.70| 48.43 42.29 || 222.73| 48.42 47.37
%rdc | N/A | 56.68% 67.14%| N/A | 78.26% 78.73%

Table 4: CCost Comparison

Model Format — +++t—- ——— | + ++++ - — —+
CCost| 25776 25146 25226 | 24746 24646 24786
%rdc || 87.8% 92.3% 91.7% | 95.1% 95.8% 94.8%
CCost| 28255 27584 27704 | 27226 27105 27258
%rdc || 71.4% 75.1% 74.3% | 77.6% 78.5% 77.4%
%err 0.193% 0.165% 0.151%| 0.085% 0.122% 0.104%

Cost Sensitive

Cost Insensitive

5.2 Results

In all discussion of our results, we use — and + to representt freq, — freq andun-orderedrulesets,
respectively. A multiple model approach is denoted as aessmpiof these symbols. For example- ——
represents a multiple model where all rulesets-afecq.

Table 3 shows the average operational cost per event fogie stassifier approachy; learned as-
or +) and the respective multiple model approaches{ +—, — — —— or+ + £+, — — —+). The first
row below each method is the average OpCost per event anédhadrow is the reductio¥{rdc) by the
multiple model over the respective single moo@W x 100%. As clearly shown in the table,
there is always a significant reduction by the multiple maggdroach. In all 4 configurations, the reduction
is more than 57% and — —+ has a reduction in operational cost by as much as 79%. Thifisant
reduction is due to the fact thdt;, R, R3 are very accurate in filteringormal events and a majority
of events in real network environments (and consequentiytesi set) arerormal. Our multiple model
approach computes more costly features only when they adede

CCost measurements are shown in Table 4. Fherimal loss is the total cost incurred when always

predictingnormal, or > DCost;. This value is 38256 for our test set. Théinimal loss is the cost of

18

correctly predicting all connections and responding tordirusion only wherDCost(i) > RCost(i). This
Value iS 24046 and |t iS CaICUIated EDCOSt(i)<RCOSt(i) DOOSt(Z) + ZDCOSt(j)ZRCOSt(j) ROOSt(j) A

reasonable method will have a CCost measurement betWwgernymal and Minimal losses. We define

reduction asirde = piarimal_CCost_ » 100% to compare different models. As a comparison, we show
the results of both “cost sensitive” and “cost insensitimasthods. A cost sensitive method only initiates a
response ifDCost > RCost, and corresponds to the cost model in Table 2. A cost insemsitethod, on
the other hand, responds to every predicted intrusion argpresentative of current brute-force approaches
to intrusion detection. The last row of the table shows theraate {serr) of each model.

As shown in Table 4, the cost sensitive methods have significlkower CCost than the respective cost
insensitive methods for both single and multiple modelse fdason is that a cost sensitive model will only
respond to an intrusion if its response cost is lower thadadteage cost. The error rates for all 6 models
are very low € 0.2%) and very similar, indicating that all models are very aeter However, there is
no strong correlation between error rate and CCost, as a avorate model may not necessarily have
detected more costly intrusions. There is little variatiothe total CCost of single and multiple models in
both cost-sensitive and cost-insensitive settings, sigttiat the multiple model approach, while decreasing
OpCost, has little effect on CCost. Taking both OpCost andsE@to account (Tables 3 and 4), the highest
performing model is- — —+.

It is important to note that all results shown are specifihdistribution of intrusions in the test data

set. We can not presume that any distribution may be typicall oetwork environments.

6 Reated Work

Several researchers and experts have pointed out the enperdf using intrusion detection (and computer
security in general) as a means of risk management [10, 5,Qait work in cost-sensitive modeling for

IDSs has benefited from their insightful analysis and exten®al-world experiences.

19

Researchers have begun to develop principles and theoriggrusion detection. Axelsson [4] pointed
out that the established fields of detection and estimatieory are similar to intrusion detection. For
example, the subject of an anomaly detection model correlspto the “signal source” in detection and
estimation theory, the auditing mechanism correspondsitmal transmission,” the audit data corresponds
to the “observation space,” and in both cases, the task isrteeddetection rules. Therefore, the results from
detection and estimation, which have been found applidatdevide range of problems, may be used in the
IDS domain. One of the key findings by Axelsson is that a deteanhodel should be optimized for some
utility function, which need not represent statistical @ecy, but instead could involve some definition of
cost. This finding validates the motivation of our researebctibed in this paper.

As discussed throughout this paper, our work draws fromarelsen computer security assessment and
intrusion taxonomies. In particular, Glaseman et al. dised a model for evaluating the total expected cost
in using a security systemas (s) = O(s) + D(s), where O§) is the operational cost of and D) is
the expected loss [13]. B)is calculated by summing the products of exposed value langriobability of
safeguard failure over all possible threats. This modeinslar to our cost model for IDSs, as defined in
Equation 1. However, our definition of consequential coletwed cost-based optimization strategies to be
explored because it includes the response cost and mosleddationship with damage cost.

Credit card and cellular phone fraud detection are closelgted to intrusion detection because they
also deal with detecting abnormal behavior. Both of thegs@iegiions are motivated by cost-saving, and
therefore, use cost-sensitive modeling techniques. Iditcoard fraud detection, for example, the cost
factors include operation cost, the personnel cost of tigating a potentially fraudulent transaction (known
as challenge cost), and loss (damage cost). If the dollauat@d a suspected transaction is lower than the
challenge cost, the transaction is authorized and thetaradi company will take the potential loss. Since
the cost factors in fraud detection can be folded into dalfaounts, the cost-sensitive analysis and modeling
tasks are much more simple than in intrusion detection.

Cost-sensitive modeling is an active research area in daiagrand machine learning because of the

20

demand from application domains such as medical diagnosidraud and intrusion detection. Several
techniques have been proposed for building models optidrfiaegiven cost metrics. In our research we
study the principles behind these general techniques avelaenew approaches according to the cost

models specific to IDSs.

7 Conclusion

It is very important to establish the cost-effectivenesmrfision detection because the ultimate goal of an
IDS is to protect the information assets that are at risk amdhaost valuable to an organization. In this
paper, we have examined cost factors that are relevantngsiaoh detection, which include development
cost, operational cost, damage cost, and response costaWeshown that it is necessary to use an attack
taxonomy along with organization-specific security p@gciand priorities to measure these cost factors.
We studied the trade-off relationships among these faendsdefined consequential cost to be the cost
associated with the predictions of an IDS. The total exgectest of an IDS is the sum of the operational
and consequential costs. The cost-benefit of an IDS is nwedfén its abilities to reduce this total expected
cost. We presented a multiple model machine learning apprfm reducing operational cost and a post-
detection decision module for reducing consequential &rsipirical evaluation using the DARPA Intrusion
Evaluation dataset shows that our approaches are indesdiedt

As pointed out by Dorothy Denning, cost analysis (and riskeasment in general) is not an exact
science because precise measurement of relevant factterismpossible [10]. Cost-benefit analysis and
modeling, however informal or incomplete, is often verydfiel for an organization to determine appropriate
protection mechanisms. The study of cost-sensitive miogldbr intrusion detection is both challenging
and extremely important. Our main contributions to thidgtare in the development of a framework for
analyzing cost factors and building cost-sensitive modilsdoing so, we offer a better understanding of

the development and deployment of cost-effective IDSs.

21

7.1 FutureWork

It is possible to improve the accuracy of ID models traineidgisur multiple model approach by using the
maximum precision of all models for a given class as the ttolelsfor firing a prediction, rather than the
precision of the final and most costly model. The motivatiantis approach is that learning algorithms do
not necessarily produce more accurate models as moredsaite used in training. In fact, models using
richer feature sets may even be too complex and less acduoratertain classes than less costly models.
We would expect to see slightly higher accuracy using this@gch. However, since model evaluation may
proceed farther into the chain of more costly models, theraldvbe a penalty in operational cost.

One limitation of our current modeling techniques is thatewltost metrics change, it is necessary
to reconstruct new cost-sensitive models. For future was,will study methods for building dynamic
models that do not require re-training. These techniquéselp reduce the cost of re-learning models due
to changes in intra-site cost metrics and deployment atshiveites with inherently different cost models.

We will study cost-sensitive analysis and modeling techegfor detection of complex attack scenarios.
We will also study how to incorporatmcertaintyof cost analysis due to incomplete or imprecise estimation,
especially in the case ahomaly detectiosystems, in the process of cost-sensitive modeling. And ive w
perform rigorous studies and experiments in a real-worir@mmnent to further refine our cost analysis and

modeling approaches.

Acknowledgment

This research is supported in part by grants from DARPA (B2080-1-0603).

References

[1] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel,daB. Stoner. State of the practice of intrusion
detection technologies. Technical Report CMU/SEI-990Z8; CMU/SEI, 2000.

[2] E. Amoroso.Intrusion Detection: An Introduction to Internet Survaitice, Correlation, Traps, Trace
Back, and Responséntrusion.Net Books, 1999.

22

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

A. M. Anderson. Comparing risk analysis methodologigsD. T. Lindsay and W. L. Price, editors,
Information SecurityElsevier Science Publishers, 1991.

S. Axelsson. A preliminary attempt to apply detectiordastimation theory to intrusion detection.
Technical report, Department of Computer Engineering,lfdbes University of Technology, Gote-
borg, Sweden, 2000.

R. Bace.Intrusion Detection Macmillan Technical Publishing, 2000.

R. P. Campbell and G. A. Sands. A modular approach to ceenmecurity risk management. In
AFIPS Conference ProceedingSFIPS Press, 1979.

F. Cohen.Protection and Security on the Information Superhighwdghn Wiley & Sons, 1995.

W. W. Cohen. Fast effective rule induction. Machine Learning: the 12th International Conference
Lake Taho, CA, 1995. Morgan Kaufmann.

DARCOM. Engineering Design Handbook: Army Weapon Systems AnaBaisTwo (DARCOM-P
706-102) US Army Materiel Development And Readiness Command, 1979.

D. Denning.Information Warfare and SecurityAddison Wesley, 1999.

P. Domingos. Metacost: A general method for making sifas's cost-sensitive. |IRroceedings of
the 5th ACM SIGKDD International Conference on Knowledgecbvery & Data Mining (KDD-99)
August 1999.

W. Fan, W. Lee, M. Miller, and S. J. Stolfo. Anomaly deten: An incremental approach. submitted
for publication, 2000.

S. Glaseman, R. Turn, and R. S. Gaines. Problem areasriputer security assessment.Aroceed-
ings of the National Computer Conferend®77.

W. Lee. A Data Mining Framework for Constructing Features and Madfgr Intrusion Detection
SystemsPhD thesis, Columbia University, June 1999.

W. Lee, S. J. Stolfo, and K. W. Mok. A data mining frameWwéor building intrusion detection models.
In Proceedings of the 1999 IEEE Symposium on Security anddrivéay 1999.

U. Lindgvist and E. Jonsson. How to systematically sigscomputer security intrusions. Proceed-
ings of the IEEE Symposium on Research in Security and Bricakland CA, May 1997.

R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, PlcClung, D. Weber, S. Webster,
D. Wyschogrod, R. Cunninghan, and M. Zissman. Evaluatitigidion detection systems: The 1998
darpa off-line intrusion detection evaluation. Pnoceedings of the 2000 DARPA Information Surviv-
ability Conference and Expositipdanuary 2000.

Matthew Miller. Learning cost-sensitive classificatirules for network intrusion detection using rip-
per. Technical report, Computer Science Department, Caltdniversity, June 1999.

T. Mitchell. Machine Learning McGraw-Hill, 1997.
Network Flight Recorder Inc. Network flight recordettgh//www.nfr.com, 1997.
S. Northcutt.Intrusion Detection: An Analyst's Handbaoklew Riders, 1999.

V. Paxson. Bro: A system for detecting network intrugler real-time. InProceedings of the 7th
USENIX Security Symposiyi®an Antonio, TX, 1998.

23

