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Summary

As malicious intrusions (commonly termed “hacks”) into computer systems have become

a growing problem, the need for accurately detecting these intrusions has risen.  This paper presents

a novel approach to detecting these intrusions by using a complex artificial intelligence method

known as a genetic algorithm applied to an Intrusion Detection System.  For this experiment, a

genetic algorithm was written to learn how to detect malicious intrusions and separate them from

normal use.  The algorithm was then tested in a real-world simulation to gauge its effectiveness

under unpredictable conditions.
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Abstract

This experiment analyzed the effectiveness of a genetic algorithm applied to the detection

of computer intrusions and malicious computer behavior.  The use of genetic algorithms to detect

malicious computer behavior is a novel approach to the computer network intrusion detection

problem presented in designing an Intrusion Detection System.  A genetic algorithm is a method of

artificial intelligence problem-solving based on the theory of Darwinian evolution applied to

mathematical models.  The genetic algorithm designed for this experiment promoted a high

detection rate of malicious behavior and a low false positive rate of normal behavior classified as

malicious.  The genetic algorithm was given “training data” from which an empirical model of

malicious computer behavior was generated.  This model was then tested over previously unseen

data to gauge its real-world performance.  The results presented show that the genetic algorithm was

successfully able to generate an accurate empirical behavioral model from training data and then

able to successfully apply this empirical knowledge to data never seen before.  The final model

produced had an overall accuracy level of 97.8%, which showed both a high detection rate and an

extremely low false positive rate.  From these results, it was concluded that genetic algorithms are

a viable method for empirical model generation for computer intrusion detection.  Genetic

algorithms are now a possible alternative for the detection of malicious intrusions.

Introduction

As reliance upon the use of digitally transmitted data over computer networks such as the

Internet has increased, so has the need for protecting these networks from malicious users

(commonly called “hackers” or “crackers”).  Many methods for detecting malicious intruders (e.g.,
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firewalls, password protected systems) currently exist.  However, these traditional methods are

becoming increasingly vulnerable and inefficient due to their inherent problems.  As a result, new

methods for intrusion detection that are not hampered by vulnerability and inefficiency must be

developed (Eskin et al, 2001).  This research sought to design such a detection method through the

use of a genetic algorithm.

Traditional systems in place for intrusion detection primarily use a method known as

“fingerprinting” to identify malicious users.  Fingerprinting requires the compilation of the unique

traits of every type of attack on a computer system.  Each generated fingerprint is first added to the

attack database of a detection system and then compared to all subsequent user connections for

classification as either a malicious or normal connection (Lane, 1998).  This trait compilation is

typically accomplished through human analysis by the creators of the system.  The resulting

fingerprint updates must then be manually installed on each individual system in use (Eskin, 2001;

Stolfo, 2000).

There are several inherent problems with this method: a system must first be compromised

by an attack for a fingerprint to be generated; a separate fingerprint is required for each different

type of attack; and as the number of fingerprints grows, more computer resources must be allocated

to detection, degrading overall system performance.  In addition, to gain protection from new

attacks, there is a significant waiting period from the time a new attack is first reported to the time

that a fingerprint is generated.  During this waiting period, a system is left vulnerable to the new

attack and may be compromised.  Moreover, in extreme scenarios, a fingerprint-based system may

be unable to allocate all required resources to detect attacks because of the number of fingerprints,

resulting in undetected attacks (Lee et al, 2001).
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As an alternate solution for protecting computers from malicious users, a model-based

Intrusion Detection System (IDS) may be used.  Instead of using a fingerprinting method of user

classification, an IDS compares learned user characteristics from an empirical behavioral model to

all users of a system.  User behavior is generally defined as the set of objective characteristics of a

connection between a client (e.g., a user’s computer) and a server.  Using a generalized behavioral

model is theoretically more accurate, efficient, and easier to maintain than a fingerprinting system.

This method of detection eliminates the need for an attack to be previously known to be detected

because malicious behavior is different from normal behavior by nature (Sinclair et al, 1999).  Also,

a model based system uses a constant amount of computer resources per user, drastically reducing

the possibility of depleting available resources.  Furthermore, while actual attack types by malicious

users may vary widely, a model-based IDS does not require the constant updates typical of

fingerprint-based systems because the characteristics of any attack against a system will not

significantly change throughout the lifetime of the system because attacks are  inherently different

from normal behavior (Eskin et al, 2001; Lee et al, 2001; Sinclair et al, 1999).

In previous research, the options for model generation have been to base it on normal users

or to base it on malicious users (Eskin et al, 2001).  Models based on normal users, known as

Anomaly Detection models, use an empirical behavioral model of a normal user and classifies any

computer activity that does not fit this model as malicious.  Models based on malicious users are

known as Misuse Detection models.  These models look for a pattern of malicious behavior, and

behavior that fits this model is classified as malicious (Eskin et al, 2001).  In this research, neither

model was explicitly specified, allowing the genetic algorithm to generate the best model.

An Intrusion Detection System must first be able to detect malicious user connections, for
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which it must have a generalized model of user behavior for comparison to users of a system.  The

most efficient method for generating a user model is to apply a data analysis algorithm to given

“training data,” which is representative of real world data (Stolfo et al, 2000), and then generate an

empirical model of either type of user based on this training data.  Previous research into empirical

model generation has used data analysis algorithms such as generalized data mining techniques (Lee

et al,1998, 2001), sparse Markov transducers (Eskin et al, 2001), and genetic algorithms (Cedex,

1993; Crosbie & Spafford, 1995).  Moreover, previous research using genetic algorithms as a

method for intrusion detection has either been theoretical (Cedex, 1993) or become obsolete and is

no longer applicable to current intrusion detection research (Crosbie & Spafford, 1995).  The

experiment presented in this paper seeks to test the viability of genetic algorithms as a method for

generating empirical user behavioral models.

A genetic algorithm is a method of data analysis that works analogously to Darwinian

evolution (Koza, 1992).  Within a computer simulation, a population of many individuals is created,

each individual representing a possible mathematical model.  Each individual has one or more

chromosomes that function as basic instructions to the individual in a cause (e.g., input data) and

effect (e.g., user classification) manner.  An individual is measured by the aggregate performance

of its chromosomes.  An initial population is created by complete randomization of the

chromosomes, and individuals of subsequent generations go through mutations, which are also

randomized (Moriarty et al, 1999).  As in Darwinism, a population that goes through many

generations eliminates poor performing individuals and allows better performing individuals to

replicate and mutate themselves during each generation.  This genetic algorithm was designed so

that each individual represented a possible behavioral model.
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Figure 1: Genetic algorithm theory.  This is an application to the Intrusion Detection problem.

The performance of an individual is measured by a fitness function.  A fitness function rates

the performance of an individual in its environment by comparing the results of the individual’s

chromosomes with the desired results of the problem as defined by the author of the algorithm

(Koza, 1992).  The fitness is generally expressed within the algorithm as a floating point (i.e.,

decimal) number with a predefined range of values, from best performing to worst performing.  As

in Darwinian evolution, low-performing individuals are eliminated from the population and high-

performing individuals are cloned and mutated, replacing those that were eliminated.  Analogous

to biological mutations, some of the randomly mutated individuals theoretically improve and return

superior results until an individual returning a perfect fitness score, known as an ideal individual,

is found.  If such an individual is not found, the genetic algorithm stops when a predefined

maximum number of generations is reached.
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The goal of this research is to test whether genetic algorithms are a viable option for model

generation in an artificial intelligence-based  Intrusion Detection System, designed to replace or

reinforce fingerprinting systems.  The genetic algorithm written for this experiment isolates forty-

one different characteristics of user connections (Stolfo, 2000) to classify users.  For comparison,

former research has analyzed only five or fewer characteristics (Crosbie, 1995).  This genetic

algorithm also applies the use of a novel randomized weighting system, based on randomized

coefficients in input data, to determine if a user is malicious or normal.

Methodology: The Dataset

In this study, a genetic algorithm was designed to be run over the 1999 Knowledge

Discovery in Database (KDD) Cup data, supplied by the Defense Advanced Research Projects

Agency (DARPA) and the Massachusetts Institute of Technology’s Lincoln Labs (Lippmann, 2000).

This data set was selected both for its modernity and similarity to data an Intrusion Detection

System would see in a real-world scenario.  The data set was generated via a simulated U.S. Air

Force local-area network set up at Lincoln Labs, which was run and operated similarly to a standard

Air Force network, excepting for planned and recorded attacks.

Originally, the data consisted of nine weeks of raw Transmission Control Protocol (TCP)

dump data from the network.  From this raw data, which was roughly four gigabytes in size,

connection records were established based upon sequences of TCP packets (Stolfo et al, 2000).

Forty-one unique attributes were compiled from each raw TCP packet sequence.  These included

symbolic attributes, such as “protocol type,” with values “TCP,” “ICMP,” and “UDP,” as well as

continuous attributes, such as error rates over the closed interval [0,1] and bytes transferred over the
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Equation 1: Fitness formula.

half-open interval [0,∞).  Each resulting connection record was then labeled as either normal or

malicious.  In the complete data set, there were approximately five million separate connection

records, totaling over seven hundred twenty megabytes.

The genetic algorithm was run over a ten percent subset of the data, called the training data,

and then tested over the entire data set to test real-world performance.  In the real world, an

empirical behavior model would rarely see any data which directly corresponds to training data.

Instead, the model must be able to extrapolate conclusions learned from the given training data and

return an appropriate decision.  Generating a model from the ten percent subset was meant to test

whether it was able perform this extrapolation over the entire data set.

Methodology: The Genetic Algorithm

In this study, the fitness of an individual was dependent upon how many attacks were

correctly detected and how many normal use connections were classified as attacks.  Correct

detections were expressed as a positive ratio of total attacks while false positives were expressed as

a negative ratio of total normal connections.  The fitness function developed for this experiment, F,

of specific individual δ i was: 

where α is the number of correctly detected attacks, A the number of total attacks, β the number of
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Equation 2: Certainty formula.

false positives, and B the total number of normal connections.  The range of fitness values for this

function was over the closed interval [-1,1] with -1 being the poorest possible fitness and 1 being

the ideal.  A high correct detection rate and a low false positive rate yielded a high score on the

fitness function for an individual.  Low detection rates or high false positive rates yielded low scores

on the fitness function.

The model generated by this genetic algorithm was based on a new method of data analysis

for the intrusion detection problem.  Each node in the model’s decision tree was designed to hold

a randomized coefficient for the data, so that this coefficient multiplied by the data would yield a

weight for the certainty of whether a certain record was an attack or not.  The coefficients were

based on an Ephemeral Random Constants (ERC) (Koza, 1992), random numbers generated by the

genetic algorithm specific to mathematical modeling.  These numbers’ slight change in value was

the basis for mutation in this genetic algorithm. For symbolic connection attributes (e.g., connection

type), different weights were established for each symbol based on an ERC.  For continuous

connection attributes (e.g., bytes sent), ERC coefficients were randomly established for the data.

In continuous attributes that contained data of magnitudes apart, such as bytes sent, separate ERC

coefficients were established for each magnitude of data.

The certainty formula developed for this experiment, Ci, of whether record χ was classified

as an attack by model i was:
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where ℜ i,j is the Ephemeral Random Constant-based coefficient for attribute χ j and n is the number

of attributes.  An arbitrary threshold value was established, and any certainty values which exceeded

this threshold value were classified as malicious attacks.

The genetic algorithm was run for one hundred generations with one hundred individuals.

Forty-one different types of nodes were established, one for each of the forty-one connection record

attributes.  The genetic algorithm package ECJ 7 was used for this research (Luke, 2001).  It

provided the necessary population breeding, randomizing, and statistics gathering functions, from

which this genetic algorithm was written.  The genetic algorithm was written in Java, and the

Webgain Visual Café 4.1 Expert Edition interface development environment was used to run the

experiment.  This experiment was run on a Dell computer with an Intel Pentium III 800 megahertz

microprocessor and 256 megabytes of random access memory on Microsoft Windows 2000 using

Sun Microsystem’s Java Development Kit (JDK) version 1.3.1.

Information collected on each generation consisted of the mean fitness of all of the

individuals within the generation, the fitness of the best performing individual, the correct detection

rate and the false positive rate.

Results and Conclusion

The experiment took approximately forty-eight hours to complete.  The algorithm was run

twice with the same parameters.  Both runs returned impressive results: the best fitness value

returned was 0.967817, very close to the ideal fitness value of 1.  The breakdown of the fitness value

showed that 97.4694% of attacks in the training data (the ten percent subset) were correctly detected

and 0.6877% of normal connections were incorrectly classified as attacks.  This corresponds to the
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Figure 2: Best individual’s fitness value calculated by F(δ) vs. generation number

desired results of a high detection rate and a low false positive rate.

Both separate runs of the experiment produced the same final individual, yielding the same

statistics.  When these final individual’s models were applied to the full data set, both returned a

fitness value of .97454, with 97.7601% of attacks correctly detected and 0.306% of normal

connections classified as attacks.  This demonstrated that the best model generated using training

data successfully was able to detect unknown attacks over previously unseen data.

Figure 2 shows the evolution of the best individual of each generation.  In the initial

generation, an individual with a fitness value of 0.70997 was created in run 1 and an individual with

a fitness value of 0.710028 was created in run 2.  The fitness value of the best individual for each

generation had an approximate steady increase until generation forty, at which point it is apparent

that the best possible individual possible by the current methods had been created.  This

demonstrated the ability of the genetic algorithm to successfully evolve an individual’s model.
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Figure 3: Mean fitness value for the population vs. generation number

By correlating this information with Figure 3, which demonstrates the mean fitness value

of the population, it is apparent that the best individual created in the first run was initially unique,

but its high fitness value caused it to replaced much of the population’s unfit individuals with

mutated copies of itself.  This can be concluded from the mean fitness of the initial populations

being 0.053734 and 0.039588 for run 1 and run 2, respectively, while the fitness values for the best

individuals were 0.70997 and 0.710028, respectively.  It is apparent that by the fourth generation

of the genetic algorithm for each run, mutated copies of the superior individual(s) from the previous

generations flourished in the population.  Because of these numerous randomly mutated copies,

more fit individuals were created, as evidenced by the best individual’s fitness value increase in

Figure 2.  From the steady rate of the population’s mean fitness value in both runs after generation

sixty-five, it is apparent that the best individual possible with the current parameters made up nearly

the entire population by generation sixty-five.  It did not make up the whole population because the
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Figure 4: Scatter plot of the best individual of each generation’s correct detection rate vs.
its false positive rate

genetic algorithm was designed to randomly introduce new individuals for each generation.

Figure 4 demonstrates the trade-off of a higher correct attack detection rate, computed by

the ratio of the number of correctly detected attacks to the number of total attacks, to a higher false

positive rate, computed by the ratio of the number of normal connections classified as attacks to the

number of total normal connections.  As expected, there is a positive correlation between these two

variables; as more attacks were correctly detected, more normal connections were incorrectly

classified as attacks.  However, the largest false positive ratio is .006877, meaning that only

0.6877% of normal connections were classified as attacks, a very low false positive rate.  The best

individual generated by the genetic algorithm for both runs was able to detect 386,703 of the

396,743 attacks in the training data and classified only 669 of the 97,276 normal connections as

attacks.  When the individual’s model was applied to the entire data set, it was able to detect
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3,825,703 of the 3,925,650 attacks and classified only 2,977 of the 972,779 normal connections as

attacks.  These ratios are approximately equal, demonstrating that the empirical model generated by

the genetic algorithm from learning over training data was successfully able to correctly classify

users in previously unseen data.

From the results obtained, it is evident that the genetic algorithm designed for this

experiment was successfully able to generate a model with the desired characteristics of a high

correct detection rate and a low false positive rate from learning over training data.  Likewise, the

genetic algorithm was able to perform the mutation and evolution strategies according to the fitness

function.  The genetic algorithm then successfully applied what it had learned to a real-world test

case.

Discussion

The success of the genetic algorithm shows that this method of model generation for an

Intrusion Detection System is a viable alternative.  All hypothesis were proven: the genetic

algorithm successfully evolved an individual’s model through randomized mutation and the model

generated over training data was successfully able to apply its empirical knowledge to data not seen

before.  This supports the hypothesis that the characteristics of malicious computer connections are

inherently dissimilar to normal connections.

The quality of the results presented warrants future research in the area of genetic algorithms

applied to the Intrusion Detection problem.  In this experiment, one hundred individuals were

evolved through one hundred generations, allowing for a maximum possibility of ten thousand

unique individuals.  This may have been a limiting factor, and given more individuals and/or more
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generations, it is possible that an even better model could be generated from the given data set.

Also, the fitness function F(δ) presented in Equation 1 can be changed to provide weighting for

desired results.  The negative influence of false positives on an individual’s fitness can be increased

or reduced by introducing coefficients of the two ratios into the equation, thus weighting the desired

characteristics of a high detection rate and low false positive rate.  As another modification to the

fitness function, the amount of computer resources used may be used in the fitness function.

Additionally, the certainty formula C(χ) presented in Equation 2 could be exchanged for a different

method of certainty of whether a given connection is an attack.

The next step of this research will be the implementation of such a model generated by a

genetic algorithm to real-time intrusion detection.  By doing this, the efficiency of a model generated

could be gauged in the real-world and compared to traditional methods of intrusion detection.  Also,

the efficiency of a model generated by a genetic algorithm could be compared to models generated

using other techniques.

The results presented in this paper show that genetic algorithms are a promising method for

the detection of malicious intrusions into computer systems.  The model generated may be installed

on an existing Intrusion Detection System for further analysis of its performance.  The model

generation presented in this research may be used to supplement or possibly replace current intrusion

prevention methods.
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