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Abstract. Clustering has recently enjoyed progress via spectral meth-
ods which group data using only pairwise affinities and avoid parametric
assumptions. While spectral clustering of vector inputs is straightfor-
ward, extensions to structured data or time-series data remain less ex-
plored. This paper proposes a clustering method for time-series data
that couples non-parametric spectral clustering with parametric hidden
Markov models (HMMs). HMMs add some beneficial structural and
parametric assumptions such as Markov properties and hidden state
variables which are useful for clustering. This article shows that us-
ing probabilistic pairwise kernel estimates between parametric models
provides improved experimental results for unsupervised clustering and
visualization of real and synthetic datasets. Results are compared with a
fully parametric baseline method (a mixture of hidden Markov models)
and a non-parametric baseline method (spectral clustering with non-
parametric time-series kernels).

1 Introduction

This paper explores unsupervised learning in the time-series domain using a com-
bination of parametric and non-parametric methods. Some parametric assump-
tions, such as Markov assumptions and hidden state assumptions, are quite useful
for time-series data. However, it is also advantageous to remain non-parametric
and agnostic about the overall shape that a collection of time-series data forms.
This paper provides surprising empirical evidence that a semi-parametric [1,2]
method can outperform both fully parametric methods of describing multiple
time-series observations and fully non-parametric methods. These improvements
include better clustering performance as well as better embedding and visual-
ization over existing state-of-the-art time-series techniques.

There are a variety of parametric and non-parametric algorithms for discov-
ering clusters within a dataset; however, the application of these techniques for
clustering sequential data such as time-series data poses a number of additional
challenges. Time-series data has inherent structure which may be disregarded
by a fully non-parametric method. Additionally, a clustering approach for time-
series data must be capable of detecting similar hidden properties or behavior
between sequences of different lengths with no obvious alignment principle across
temporal observations.

J.N. Kok et al. (Eds.): ECML 2007, LNAI 4701, pp. 164–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Spectral Clustering and Embedding with Hidden Markov Models 165

Alternatively, standard parametric clustering methods are popular but can
make excessively strict assumptions about the overall distribution of a dataset
of time-series samples. Expectation Maximization (EM), for example, estimates
a fully parametric mixture model by iteratively adjusting the parameters to max-
imize likelihood [3,4,5]. In the time-series domain, a mixture of hidden Markov
models (HMMs) can be used for clustering [5]. This is sensible since the un-
derlying Markov process assumption is useful for a time series. However, the
parametric mixture of HMMs may make invalid assumptions about the shape of
the overall distribution of the collection of time-series exemplars. Just as a mix-
ture of Gaussians assumes a radial shape for each cluster, many fully parametric
time series models make assumptions about the shape of the variation across
the many time series in a dataset. This is only sensible if data is organized into
radial or symmetric clusters. In practice, though, clusters (of points or of time
series) might actually be smoothly varying in a non-radially distributed manner.

Recent graph-theoretic approaches to clustering [6,7,8], on the other hand,
do not make assumptions about the underlying distribution of the data. Data
samples are treated as nodes in a weighted graph, where the edge weight be-
tween any two nodes is given by a similarity metric or kernel function. A k-way
clustering is represented as a series of cuts which remove edges from the graph,
dividing the graph into a set of k disjoint subgraphs. This approach clusters
data even when the underlying parametric form is unknown (as long as there
are enough samples) and far from radial or spherical. Unfortunately, recovering
the optimal cuts is an NP-complete problem as was shown by Shi and Malik
[8] who proposed the Normalized Cut (NCut) criterion. Spectral clustering is a
relaxation of NCut into an linear system which uses eigenvectors of the graph
Laplacian to cluster the data [7].

This article takes a semi-parametric approach to combine the complementary
advantages of both methods. It applies recent work in spectral clustering [7] to
the task of clustering time-series data. However, each time series is individually
modeled using HMMs. This assumes HMM structure for each time-series datum
on its own yet assumes no underlying structure in the overall distribution of the
time-series data. The sequences are clustered only according to their individual
pairwise proximity in HMM parameter space. It should be noted that though
HMMs are used in this paper, the approach is applicable to clustering other time-
series datasets under different parametric assumptions such as linear dynamical
systems.

2 HMMs and Kernels

2.1 Hidden Markov Models

Assume a dataset of n = 1 . . .N time-series sequences where each datum xn is
an ordered sequence of t = 1, . . . , Tn vectors xn,t in some Euclidean space. A
natural parametric model for representing a single time series or sequence xn is
the hidden Markov model (HMM), whose likelihood is denoted p(xn|θn). Note
that the model θn is different for each sequence. This replaces the common iid



166 T. Jebara, Y. Song, and K. Thadani

(independent identically distributed) assumption on the dataset with a weaker id
(independently distributed) assumption. More specifically, for p(xn|θn), consider
a first-order stationary HMM with Gaussian emissions. The probability model
of a sequence is p(x|θ) where x = {x1, . . . , xT } is a sequence of length T where
each observation vector is xt ∈ �d. In addition, an HMM has a hidden state
at each time point q = {q1, . . . , qT } where each state takes on a discrete value
qt = {1, . . . , M}. The likelihood of the HMM factorizes as follows:

p(x|θ) =
∑

q0,...,qT

p(x0|q0)p(q0)
T∏

t=1

p(xt|qt)p(qt|qt−1) (1)

The HMM is specified by the parameters: θ = (π, α, μ, Σ)

1. The initial state probability distribution πi = p(q0 = i), i = 1 . . .M .
2. The state transition probability distribution given by a matrix α ∈ �M×M

where αij = p(qt = j|qt−1 = i).
3. The emission density p(xt|qt = i) = N (xt|μi, Σi), for i = 1 . . .M , where

μi ∈ �d and Σi ∈ �d×d are the mean and covariance of the Gaussian in
state i. Take μ = {μ1, . . . , μM} and Σ = {Σ1, . . . , ΣM} for short.

Estimating the parameters of an HMM for a single sequence is typically done
via EM. The E-step uses a forward-backward pass or junction tree algorithm
(JTA) to obtain posterior marginals over the hidden states given the observa-
tions: γt(i) = p(qt = Si|xn, θ̂n) and ξt(i, j) = p(qt = Si, qt+1 = Sj |xn, θ̂n).
The M-step updates the parameters θ using these E-step marginals as follows:
π̂i = γ1(i)

α̂ij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1

∑M
j=1 ξt(i, j)

μ̂i =
∑T

t=1 γt(i)xt∑T
t=1 γt(i)

Σ̂i =
∑T

t=1 γt(i)(xt − μi)(xt − μi)T

∑T
t=1 γt(i)

.

2.2 Probability Product Kernels

A natural choice of kernel between HMMs is the probability product kernel
(PPK) described in [9] since it computes an affinity between distributions. The
generalized inner product is found by integrating a product of the distributions
of pairs of data sequences over the space of all potential observable sequences
X : K(p(x|θ), p(x|θ′)) =

∫
pβ(x|θ)pβ(x|θ′)dx. When β = 1/2, the PPK becomes

the classic Bhattacharyya affinity metric between two probability distributions.
The Bhattacharyya affinity is favored over other probabilistic divergences and
affinities such as Kullback-Leibler (KL) divergence because it is symmetric and
positive semi-definite (it is a Mercer kernel). In addition, it is computable in
closed form for a variety of distributions including HMMs while the KL between
two HMMs cannot be exactly recovered efficiently.

This section discusses the computation of the PPK between two HMMs p(x|θ)
and p(x|θ′). For brevity, we denote p(x|θ) as p and p′(x|θ′) as p′ where x repre-
sents a sequence of emissions xt for t = 1...T . While the brute force evaluation
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Table 1. The probability product kernel

Probability product kernel K(θ, θ′):
K(θ, θ′) =

∑
qT

∑
q′

T
Ψ(qT , q′

T )
∏T

t=1

∑
qt−1

∑
q′

t−1
p(qt|qt−1)βp′(q′

t|q′
t−1)βΨ(qt−1, q

′
t−1)p(q0)βp′(q′

0)β

Elementary kernel Ψ(·):
Ψ(qt = i, q′

t = j) =
∫

xt
p(xt|qt = i)βp′(xt|q′

t = j)βdxt

An efficient iterative method to calculate the PPK K̃(θ, θ′):
Φ(q0, q

′
0) = p(q0)βp′(q′

0)β

for t = 1 . . . T

Φ(qt, q
′
t) =

∑
qt−1

∑
q′

t−1
p(qt|qt−1)βp(q′

t|q′
t−1)βΨ(qt−1, q

′
t−1)Φ(qt−1, q

′
t−1)

end
K̃(θ, θ′) =

∑
qT

∑
q′

T
Φ(qT , q′

T )Ψ(qT , q′
T )

of the integral over x is expensive, an exact efficient formula is possible. Effec-
tively, the kernel takes advantage of the factorization of the HMMs to set up an
efficient iterative formula.

Initially, an elementary kernel Ψ(θ, θ′) =
∫

xt
pβ(xt|θ)pβ(xt|θ′)dxt is computed;

this is the Bhattacharyya affinity between the emissions models for p and p′ inte-
grated over the space of all emissions. For the exponential family of distributions
this integral can be calculated in closed form. For HMMs with Gaussian emis-
sions, this integral is proportional to:

Ψ(i, j) =
|Σ†|1/2

|Σi|β/2|Σj |β/2 exp(−β
2 (μT

i Σ−1
i μi + μj

T Σj
−1μj − μ†T

Σ†μ†)

where Σ† = (Σ−1
i + Σj

−1)−1 and μ† = Σ−1
i μi + Σj

−1μj . Given the elementary
kernel, the kernel between two HMMs is solved in O(TM2) operations using
the formula in Table 1 (further details can be found in [9]). Given a kernel
affinity between two HMMs, a non-parametric relationship between time series
sequences emerges. It is now straightforward to apply non-parametric clustering
and embedding methods which will be described in section 4. The next section,
however, first describes a more typical fully parametric clustering setup using a
mixture of HMM models to couple the sequences and parameters θn. This has
the undesirable effect of coupling pairs of sequences by making global parametric
assumptions on the whole dataset instead of only on pairs of sequences.

3 Clustering as a Mixture of HMMs

Parametric approaches to clustering of time-series data using HMMs assume that
each observation sequence xn is generated from a mixture of K components and
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use different clustering formulations in order to estimate this mixture. Two such
techniques for estimating a mixture of K HMMs are the hard-clustering k-means
approach and the soft-clustering EM approach.

A k-means approach is used in [3,4] to assign sequences to clusters in each
iteration and use only the sequences assigned to a cluster for re-estimation of
its HMM parameters. Each sequence can only be assigned to one cluster per
iteration and it can run into problems when there is no good separation be-
tween the processes that generated the data approximated by the HMM param-
eters. A soft-clustering approach that overcomes these problems is described
in [5]; here each sequence has a prior probability p(z = k) of being gener-
ated by the k’th HMM. This reduces to a search for the set of parameters
{θ1, . . . , θK , p(z)} where z ∈ {1, . . .K} that maximize the likelihood function∏N

n=1
∑K

k=1 p(z = k)p(xn|θk). The E-step is similar to the E-step in the HMM-
training algorithm run separately for each of the K HMMs. The posterior like-
lihood τk

n = p(z=k)p(xn|θk)∑K
k=1 p(z=k)p(xn|θk) is estimated as the probability that sequence xn

was generated by HMM k. The M-step incorporates the posterior τk
n of each

sequence n into its contribution to the updated parameters for the kth HMM.

α̂ij =
∑N

n=1 τk
n

∑Tn−1
t=1 ξk

n,t(i, j)∑N
n=1 τk

n

∑Tn−1
t=1

∑M
j=1 ξk

n,t(i, j)
μ̂i =

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)xn,t

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)

π̂i =

∑N
n=1 τk

nγk
n,1(i)

N
Σ̂i =

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)(xn,t − μi)(xn,t − μi)T

∑N
n=1 τk

n

∑Tn

t=1 γk
n,t(i)

.

The responsibility terms τk
n also provide the priors p(z = k) for the next iteration

and determine the final clustering assignment at convergence.
In summary, this method makes strict parametric assumptions about the un-

derlying distribution of all the sequences in the dataset and attempts to find a
parameter setting that maximizes the posterior probabilities given such models
for the underlying distributions. However, these parametric assumptions aren’t
always intuitive and, as our experiments show, often negatively affect clustering
performance as opposed to the non-parametric methods that are being investi-
gated in this article.

4 Spectral Clustering of HMMs

The spectral approach to HMM clustering involves estimating an HMM model
for each sequence using the approach outlined in section 2.1. The PPK is then
computed between all pairs of HMMs to generate a Gram matrix which is used for
spectral clustering. This approach leverages both parametric and non-parametric
techniques in the clustering process; parametric HMMs make some assumptions
about the structure of the individual sequences (such as Markov assumptions)
but the spectral clustering approach makes no assumptions about the overall dis-
tribution of the sequences (for instance, i.i.d assumptions). Empirically, this ap-
proach (Spectral Clustering of Probability Product Kernels or SC-PPK) achieves



Spectral Clustering and Embedding with Hidden Markov Models 169

a noticeable improvement in clustering accuracy over fully parametric models
such as mixtures of HMMs or naive pairwise likelihood comparisons.

Listed below are the steps of our proposed algorithm. It is a time-series ana-
logue of the Ng-Weiss algorithm presented in [7].

The SC-PPK algorithm

1. Fit an HMM to each of the n = 1 . . .N time-series sequences to retrieve
models θ1...θN .

2. Calculate the Gram matrix A ∈ R
N×N where Am,n = K(θm, θn) for all pairs

of models using the probability product kernel (default setting: β = 1/2,
T=10).

3. Define D ∈ R
N×N to be the diagonal matrix where Dm,m =

∑
n Am,n and

construct the Laplacian matrix: L = D−1/2AD−1/2.
4. Find the K largest eigenvectors of L and form matrix X ∈ R

N×K by stacking
the eigenvectors in columns. Renormalize the rows of matrix X to have unit
length.

5. Cluster the N rows of X into K clusters via k-means or any other algorithm
that attempts to minimize distortion.

6. The cluster labels for the N rows are used to label the corresponding N
HMM models.

Another well-known approach to clustering time-series data is Dynamic-Time-
Warping, introduced in [3]. This method was surpassed in performance by the
spectral clustering method proposed by Yin and Yang [10] which uses a direct
comparison of HMM likelihoods as the kernel affinity. The SC-PPK method out-
performs Yin and Yang’s method due to the fact that it doesn’t calculate the
affinities based on a pair of time-series samples but integrates over the entire
space of all possible samples given the HMM models. Thus, the SC-PPK ap-
proach recovers a stronger and more representative affinity score between HMM
models. Furthermore, since the PPK computes the integration by solving a closed
form kernel using an efficient iterative method, it achieves a significant gain in
speed over the kernel used in [10].

5 Experiments

This section details the experiments that were conducted to compare semi-
parametric spectral approaches and fully parametric approaches to clustering of
time-series data. k-Means and EM versions of a mixture of HMMs approach were
used to represent the parametric setting. The two spectral clustering algorithms
investigated were Yin and Yang’s algorithm[10], which computes a likelihood-
based kernel between pairs of sequences, and the SC-PPK algorithm which com-
putes a kernel over the HMM model parameters. Note that there are parameters
which can be adjusted for both of the spectral clustering methods: the σ fall-off ra-
tio for the Yin-Yang kernel and the mixing proportion T for the SC-PPK method.
In the following experiments, the default settings were used for both methods, i.e.
σ = 1 and T = 10. Stability results for these kernels are shown in Fig 1.
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5.1 Datasets

The evaluations were run over a variety of real-world and synthesized datasets
which are described below.

MOCAP: The Motion Capture dataset (available from Carnegie Mellon Uni-
versity1) consists of time-series data representing human locomotion and actions.
The sequences consist of 123-dimensional vectors representing 41 body markers
tracked spatially through time for various physical activities. For these exper-
iments, simple activities that were likely to be hard to cluster were considere;
tests compared either similar activities or the same activity for different subjects.
Table 2 contains the results of the evaluation over these real-world datasets.
Rotated MOCAP: A synthesized dataset was generated by rotating two MO-
CAP sequences 5◦ at a time through 360 degrees. The seed sequences used were
a walking sequence from walk(#7) and a running sequence from run(#9).
This dataset, which provides us with clusters of sequences that lie on a regular
manifold, is used for comparing clustering in Table 3, comparing running times
in Table 6 and embedding in Fig 2. An additional dataset swerving was gen-
erated by rotating the walking and running sequence left and right periodically
to make their movements seem zig-zagged.
Arabic handwriting: This dataset consists of 2-dimensional time-series se-
quences which represent written word-parts of Arabic characters extracted from
the dataset used in [11]. Table 4 shows the results of clustering pairs of similar
word-parts (identified by their Unicode characters) and Fig 3(a) shows an MDS
embedding of three symbols.
Australian sign language: This dataset (from the University of California-
Irvine2) consists of multiple sign-language gestures, each represented by 27 in-
stances of 22-dimensional time-series sequences. Semantically-related expressions
such as write and draw or antonyms such as give and take were assumed to have
similar real-world symbols and formed the basis of all experiments with this
dataset. Table 5 shows the average accuracy over the clustering of 18 such pairs
of sequences while varying the number of HMM states used and Fig 3(b) shows
an embedding of three gestures.

5.2 Results

The tables in this section show the results of experiments over these various
datasets. Experiments were restricted to pairwise clustering over datasets of
similar size. The standard accuracy metric is used for comparison of results. The
results reported were averaged over multiple folds - five folds for the spectral
clustering algorithms and ten folds for the fully parametric techniques since these
algorithms converge to local maxima and have highly variable performance).

In general, the kernel-based methods outperformed the parametric meth-
ods and the PPK performed favorably compared to Yin and Yang’s kernel.
1 http://mocap.cs.cmu.edu/
2 http://www.cse.unsw.edu.au/w̃aleed/tml/data



Spectral Clustering and Embedding with Hidden Markov Models 171

Table 2. Clustering accuracy with 2-state HMMs on MOCAP data. The numbers in
the parentheses identify the index of the subject performing that particular specified
action.

Dataset k-Means EM Yin-Yang SC-PPK

simple walk vs run set 100% 100% 100% 100%
run(#9) vs run/jog(#35) 57% 52% 76% 100%
walk(#7) vs walk(#8) 59% 60% 68% 68%
walk(#7) vs run/jog(#35) 71% 69% 71% 95%
jump(#13) vs jump forward(#13) 50% 50% 75% 87%
jump(#13,#16) vs jump forward(#13,#16) 50% 50% 60% 66%

Table 3. Clustering accuracy with 2-state HMMs on synthesized MOCAP dataset. A
single pair of walking and running time-series samples were used, subsequent samples
were generated by rotating the seed pair 5◦ at a time to generate 72 unique pairs.

rotation limit step size k-Means EM Yin-Yang SC-PPK

30◦ 5◦ 100% 100% 92% 100%
60◦ 5◦

54% 71% 63% 100%
90◦ 5◦

50% 50% 75% 100%
180◦ 5◦

51% 51% 71% 100%
360◦ 5◦

50% 50% 60% 100%
360◦ 10◦

50% 50% 50% 100%
360◦ 15◦

50% 50% 50% 100%
360◦ 30◦

54% 50% 50% 100%
Swerving – 50% 50% 85% 100%

Table 4. Clustering accuracy with 2-state HMMs on Arabic handwriting dataset

Dataset k-Means EM YY SC-PPK

U0641 vs U0643 68% 64% 86% 97%
U0645 vs U0647 70% 66% 86% 100%
U062D vs U062F 78% 80% 93% 95%
U0621 vs U062D 66% 65% 86% 93%
U0628 vs U0631 71% 70% 94% 100%
U0635 vs U0644 74% 76% 95% 100%
U0621 vs U0647 71% 66% 96% 98%

Improvements in accuracy well as better runtime performance were seen in both
quantitative clustering accuracy and qualitative embedding performance. In ad-
dition, experiments were conducted to investigate the stability of the SC-PPK
method over the T parameter. Fig 1 shows stability comparisons for both spectral
clustering kernels over the respective parameters. The accuracies were averaged
over five-fold testing. It was noted that a useful setting for T usually lay within
the interval of 5 to 25. In practice, cross validation would be useful for recovering
the optimal setting.
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Table 5. Clustering accuracy on Australian sign language dataset; 18 semantically
related pairs of signs compared. Top: 5 representative pairs are shown for a range of
SC-PPK clustering accuracies. Bottom: averages for the 18 pairs over different number
of states.

Sample pairs (2-state) k-Means EM Yin-Yang SC-PPK

’hot’ vs ’cold’ 64% 98% 96% 100%
’eat’ vs ’drink’ 52% 50% 52% 93%
’happy’ vs ’sad’ 73% 54% 50% 87%
’spend’ vs ’cost’ 58% 53% 52% 80%

’yes’ vs ’no’ 51% 51% 52% 59%
# of hidden states k-Means EM Yin-Yang SC-PPK

2 64.5% 72.1% 69.3% 76.1%
3 64.4% 73.3% 75.5% 75.5%
4 65.4% 74.9% 74.7% 74.3%

Table 6. Average runtimes in seconds on a 3-Ghz machine with emissions xt ∈ R
123×1,

includes HMM training time

# of time-series samples k-Means EM Yin-Yang SC-PPK

5 20.6s 23.5s 4.1s 3.6s
10 47.1s 59.7s 11.1s 6.1s
25 68.29s 185.0s 49.9s 15.4s
50 111.6s 212.9s 171.8s 30.1s
75 178.3s 455.6s 382.8s 48.6s
100 295.9s 723.1s 650.2s 64.5s

5.3 Runtime Advantages

Unlike EM-HMM, which needs to calculate posteriors over N ×k HMM-sequence
pairs and maximize over k HMMs at every iteration until convergence, SC-PPK
requires a single HMM to be trained once for each sequence in the dataset. The
SC-PPK method calculates the integration between two HMM parameters in
closed form directly without needing to evaluate the likelihood of the individual
time-series samples, resulting in a dramatic reduction of in total runtime. In
practice, we noticed around two orders of magnitude improvement in clustering
speed over EM, as shown in Table 6. These runtimes include HMM training
times as well as clustering times.

6 Visualization of HMM Parameters

Visualization and manifold learning is another important component of unsu-
pervised learning. Starting from a set of high dimensional data points X with
xi ∈ R

N , embedding and visualization methods recover a set of corresponding
low dimensional datapoints Y (typically with typically yi ∈ R

2) such that the
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Fig. 1. Kernel stability over their respectiveparameters (a)SC-PPK-T(b)YYkernel -σ.
Accuracies averaged over five runs.

distance between yi and yj is similar to the distance between xi and xj for all
i, j = 1...N . These techniques permit visualization of high dimensional datasets
and can help confirm clustering patterns. Classic visualization and embedding
techniques include multi-dimensional scaling (MDS) [12] as well as recent con-
tenders such as semi-definite embedding (SDE) [13].

To further analyze the usefulness of the PPK at capturing an accurate rep-
resentation of the kernel affinity between two sequences, embedding using MDS
was applied to the datasets. This corresponds to training an HMM over each of
the time-series sequences and recovering the R

N×N Gram matrix where Am,n =
K(θm, θn) – identical to steps 1 and 2 of the SC-PPK algorithm. From the Gram
matrix, the dissimilarity matrix D ∈ R

N×N is given by Di,j = 1/Ai,j . This ma-
trix is then used as the input for the standard MDS algorithm as in [12]. MDS
is chosen because of its simplicity although more sophisticated methods such as
SDE are equally viable. Fig 2 shows the embedding for the rotated data using
a rotation step size of 10◦ under the Yin and Yang kernel (a) and the PPK
(b). From the figure, we can see that the Yin and Yang kernel captures some
of the periodic structure of the dataset in the embedding but it is only locally
useful and does not adequately capture the expected global circular structure
in the rotation. Conversely, the result from the PPK method is much clearer.
The PPK integrates over the sample space providing a less brittle description
of each time series. Thus the kernel affinity captures an accurate representation
of the the distance between HMM parameters with respect to all of the data
samples, forming a perfectly circular global embedding of the 360◦ rotated MO-
CAP dataset. Fig 3(a) shows PPK-based embeddings for three classes from the
Arabic handwriting dataset. The method recovered an accurated embedding as
the three classes are separated from one-another. Similarly, Fig 3(b) shows the
embeddings for three classes from the Australian sign language dataset.



174 T. Jebara, Y. Song, and K. Thadani

0 10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2
x 10

15

Walking
Running

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

walking
running

(a) (b)

Fig. 2. MDS embedding of HMM parameters using the synthesized 360◦ rotated MO-
CAP dataset with (a) the Yin-Yang kernel and (b) the probability product kernel
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7 Conclusions

This paper presented a semi-parametric approach for clustering time-series data
that exploits some parametric knowledge about the data including its Markov
properties and the presence of latent states, and at the same time utilizes non-
parametric principles and remains agnostic about the shape of the clusters a
multitude of time series can form. This works surprisingly well for time-series
data in experiments on real-world data. By avoiding parametric assumptions
about the underlying distributions or the variations across the time series, im-
proved clustering accuracy is possible.

The method combines both a non-parametric spectral clustering approach us-
ing the probability product kernel with a fully parametric maximum likelihood
estimation approach for each singleton time series. We showed that spectral
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clustering with a probability product kernel method provides improvements in
clustering accuracy over fully parametric mixture modeling as well as spectral
clustering with non-probabilistic and non-parametric affinity measures. Further-
more, embedding and visualization of time series data is also improved. Finally,
the proposed method has computational efficiency benefits over prior approaches.

For future work, we are investigating spectral clustering with the proba-
bility product kernel for other generalized graphical models and parametric
distributions. In addition, we are investigating a general formalism and gener-
alized cost functions for semi-parametric estimation that unify both parametric
and non-parametric criteria and leverage the complementary advantages of both
approaches.
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