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t. Intrusion dete
tion systems (IDSs) need to maximize se
u-rity while minimizing 
osts. In this paper, we study the problem ofbuilding 
ost-sensitive intrusion dete
tion models to be used for real-time dete
tion. We brie
y dis
uss the major 
ost fa
tors in IDS, in
lud-ing 
onsequential and operational 
osts. We propose a multiple model
ost-sensitive ma
hine learning te
hnique to produ
e models that areoptimized for user-de�ned 
ost metri
s. Empiri
al experiments in o�-line analysis show a redu
tion of approximately 97% in operational 
ostover a single model approa
h, and a redu
tion of approximately 30% in
onsequential 
ost over a pure a

ura
y-based approa
h.1 Introdu
tionIntrusion Dete
tion (ID) is an important 
omponent of infrastru
ture prote
tionme
hanisms. Many intrusion dete
tion systems (IDSs) are emerging in the mar-ket pla
e, following resear
h and development e�orts in the past two de
ades.They are, however, far from the ideal se
urity solutions for 
ustomers. Invest-ment in IDSs should bring the highest possible bene�t and maximize user-de�nedse
urity goals while minimizing 
osts. This requires ID models to be sensitive to
ost fa
tors. Currently these 
ost fa
tors are ignored as unwanted 
omplexitiesin the development pro
ess of IDSs.We developed a data mining framework for building intrusion dete
tion mod-els. It uses data mining algorithms to 
ompute a
tivity patterns and extra
t pre-di
tive features, and applies ma
hine learning algorithms to generate dete
tionrules [7℄. In this paper, we report the initial results of our 
urrent resear
h inextending our data mining framework to build 
ost-sensitive models for intru-sion dete
tion. We brie
y examine the relevant 
ost fa
tors, models and metri
srelated to IDSs. We propose a multiple model 
ost-sensitive ma
hine learningte
hnique that 
an automati
ally 
onstru
t dete
tion models optimized for given
ost metri
s. Our models are learned from training data whi
h was a
quiredfrom an environment similar to one in whi
h a real-time dete
tion tool may



be deployed. Our data 
onsists of network 
onne
tion re
ords pro
essed fromraw t
pdump [5℄ �les using MADAM ID (a system for Mining Audit Data forAutomated Models for Intrusion Dete
tion) [7℄.The rest of the paper is organized as follows: Se
tion 2 examines major 
ostfa
tors related to IDSs and outlines problems inherent in modeling and mea-suring the relationships among these fa
tors. Se
tion 3 des
ribes our multiplemodel approa
h to redu
ing operational 
ost and a MetaCost [3℄ pro
edure forredu
ing damage 
ost and response 
ost. In Se
tion 4, we evaluate this proposedapproa
h using the 1998 DARPA Intrusion Dete
tion Evaluation dataset. Se
-tion 5 reviews related work in 
ost-sensitive learning and dis
usses extensionsof our approa
h to other domains and ma
hine learning algorithms. Se
tion 6o�ers 
on
lusive remarks and dis
usses areas of future work.2 Cost Fa
tors, Models, and Metri
s in IDSs2.1 Cost Fa
torsThere are three major 
ost fa
tors involved in the deployment of an IDS. Damage
ost, DCost, 
hara
terizes the maximum amount of damage in
i
ted by an at-ta
k when intrusion dete
tion is unavailable or 
ompletely ine�e
tive. Response
ost, RCost, is the 
ost to take a
tion when a potential intrusion is dete
ted.Consequential 
ost, CCost, is the total 
ost 
aused by a 
onne
tion and in
ludesDCost and RCost as des
ribed in detail in Se
tion 2.2. The operational 
ost,OpCost, is the 
ost inherent in running an IDS.2.2 Cost ModelsThe 
ost model of an IDS formulates the total expe
ted 
ost of the IDS. In thispaper, we 
onsider a simple approa
h in whi
h a predi
tion made by a givenmodel will always result in some a
tion being taken. We examine the 
umulative
ost asso
iated with ea
h of these out
omes: false negative (FN), false positive(FP), true positive (TP), true negative (TN), and mis
lassi�ed hits. These 
ostsare known as 
onsequential 
osts (CCost), and are outlined in Table 1.FN Cost is the 
ost of not dete
ting an intrusion. It is therefore de�ned asthe damage 
ost asso
iated with the parti
ular type of intrusion it, DCost(it).TP Cost is the 
ost in
urred when an intrusion is dete
ted and some a
tionis taken. We assume that the IDS a
ts qui
kly enough to prevent the damage ofthe dete
ted intrusion, and therefore only pay RCost(it).FP Cost is the 
ost in
urred when an IDS falsely 
lassi�es a normal 
on-ne
tion as intrusive. In this 
ase, a response will ensue and we therefore payRCost(i), where i is the dete
ted intrusion.TN Cost is always 0, as we are not penalized for 
orre
t normal 
lassi�
ation.Mis
lassi�ed Hit Cost is the 
ost in
urred when one intrusion is in
orre
tly
lassi�ed as a di�erent intrusion { when i is dete
ted instead of it. We take apessimisti
 approa
h that our a
tion will not prevent the damage of the intrusionat all. Sin
e this simpli�ed model assumes that we always respond to a predi
tedintrusion, we also in
lude the response 
ost of the dete
ted intrusion, RCost(i).



Table 1. Consequential Cost (CCost) MatrixOut
ome CCost(
)Miss (FN) DCost(it)False Alarm (FP) RCost(i)Hit (TP) RCost(it)Normal (TN) 0Mis
lassi�ed Hit RCost(i) + DCost(it)
: 
onne
tion, it: true 
lass, i: predi
ted 
lass2.3 Cost Metri
sCost-sensitive models 
an only be 
onstru
ted and evaluated using given 
ostmetri
s. Qualitative analysis is applied to measure the relative magnitudes ofthe 
ost fa
tors, as it is diÆ
ult to redu
e all fa
tors to a 
ommon unit ofmeasurement (su
h as dollars). We have thus 
hosen to measure and minimizeCCost and OpCost in two orthogonal dimensions.An intrusion taxonomy must be used to determine the damage and response
ost metri
s whi
h are used in the formulation of CCost. A more detailed studyof these 
ost metri
s 
an be found in our on-going work [8℄. Our taxonomy isthe same as that used in the DARPA evaluation, and 
onsists of four typesof intrusions: probing (PRB), denial of servi
e (DOS), remotely gaining illegallo
al a

ess (R2L), and a user gaining illegal root a

ess (U2R). All atta
ks inthe same 
ategory are assumed to have the same DCost and RCost. The relatives
ale or metri
s 
hosen are shown in Table 2a.Table 2. Cost Metri
s of Intrusion Classes and Feature CategoriesCategory DCost RCostU2R 100 40R2L 50 40DOS 20 20PRB 2 20normal 0 0(a) Category OpCostLevel 1 1 or 5Level 2 10Level 3 100(b)The operational 
ost of running an IDS is derived from an analysis of the 
om-putational 
ost of 
omputing the features required for evaluating 
lassi�
ationrules. Based on this 
omputational 
ost and the added 
omplexity of extra
tingand 
onstru
ting predi
tive features from network audit data, features are 
ate-gorized into three relative levels. Level 1 features are 
omputed using at most the�rst three pa
kets of a 
onne
tion. Level 2 features are 
omputed in the middle ofor near the end of a 
onne
tion using information of the 
urrent 
onne
tion only.Level 3 features are 
omputed using information from all 
onne
tions within agiven time window of the 
urrent 
onne
tion. Relative magnitudes are assigned



to these features to represent the di�erent 
omputational 
osts as measured ina prototype system we have developed using NFR [10℄. These 
osts are shownin Table 2b. The 
ost metri
s 
hosen in
orporate the 
omputational 
ost as wellas the availability delay of these features. It is important to note that level 1and level 2 features must be 
omputed individually. However, be
ause all level3 features require iteration through the entire set of 
onne
tions in a given timewindow, all level 3 features 
an be 
omputed at the same time, in a single iter-ation. This saves operational 
ost when multiple level 3 features are 
omputedfor analysis of a given 
onne
tion.3 Cost-Sensitive ModelingIn the previous se
tion, we dis
ussed the 
onsequential and operational 
ostsinvolved in deploying an IDS.We now explain our 
ost-sensitive ma
hine learningmethods for redu
ing these 
osts.3.1 Redu
ing Operational CostIn order to redu
e the operational 
ost of an IDS, the dete
tion rules need touse low 
ost features as often as possible while maintaining a desired a

ura
ylevel. Our approa
h is to build multiple rulesets, ea
h of whi
h uses features fromdi�erent 
ost levels. Low 
ost rules are always evaluated �rst by the IDS, andhigh 
ost rules are used only when low 
ost rules 
an not predi
t with suÆ
ienta

ura
y. We propose a multiple ruleset approa
h based on RIPPER, a popularrule indu
tion algorithm [2℄.Before dis
ussing the details of our approa
h, it is ne
essary to outline theadvantages and disadvantages of two major forms of rulesets that RIPPER
omputes, ordered and un-ordered. An ordered ruleset has the form if rule1then intrusion1 elseif rule2 then intrusion2; : : : ; else normal. To generatean ordered ruleset, RIPPER sorts 
lass labels a

ording to their frequen
y in thetraining data. The �rst rule 
lassi�es the most infrequent 
lass, and the end ofthe ruleset signi�es predi
tion of the most frequent (or default) 
lass, normal,for all previously unpredi
ted instan
es. An ordered ruleset is usually su

in
tand eÆ
ient, and there is no rule generated for the most frequent 
lass. Eval-uation of an entire ordered ruleset does not require ea
h rule to be tested, butpro
eeds from the top of the ruleset to the bottom until any rule evaluates totrue. The features used by ea
h rule 
an be 
omputed one by one as evaluationpro
eeds. An un-ordered ruleset, on the other hand, has at least one rule for ea
h
lass and there are usually many rules for frequently o

urring 
lasses. There isalso a default 
lass whi
h is used for predi
tion when none of these rules aresatis�ed. Unlike ordered rulesets, all rules are evaluated during predi
tion andall features used in the ruleset must be 
omputed before evaluation. Ties arebroken by using the most a

urate rule. Un-ordered rulesets are less eÆ
ient inexe
ution, but there are usually several rules of varying pre
ision for the most



frequent 
lass, normal. Some of these normal rules are usually more a

uratethan the default rule for the equivalent ordered ruleset.With the advantages and disadvantages of ordered and un-ordered rulesetsin mind, we propose the following multiple ruleset approa
h:{ We �rst generate multiple training sets T1�4 using di�erent feature subsets.T1 uses only 
ost 1 features. T2 uses features of 
osts 1 and 5, and so forth,up to T4, whi
h uses all available features.{ Rulesets R1�4 are learned using their respe
tive training sets. R4 is learned asan ordered ruleset for its eÆ
ien
y, as it may 
ontain the most 
ostly features.R1�3 are learned as un-ordered rulesets, as they will 
ontain a

urate rulesfor 
lassifying normal 
onne
tions.{ A pre
ision measurement pr1 is 
omputed for every rule, r, ex
ept for therules in R4.{ A threshold value �i is obtained for every single 
lass, and determines thetolerable pre
ision required in order for a 
lassi�
ation to be made by anyruleset ex
ept for R4.In real-time exe
ution, the feature 
omputation and rule evaluation pro
eedas follows:{ All 
ost 1 features used in R1 are 
omputed for the 
onne
tion being exam-ined. R1 is then evaluated and a predi
tion i is made.{ If pr > �i, the predi
tion i will be �red. In this 
ase, no more features willbe 
omputed and the system will examine the next 
onne
tion. Otherwise,additional features required by R2 are 
omputed and R2 will be evaluatedin the same manner as R1.{ Evaluation will 
ontinue with R3, followed by R4, until a predi
tion is made.{ When R4 (an ordered ruleset) is rea
hed, it 
omputes features as neededwhile evaluation pro
eeds from the top of the ruleset to the bottom. Theevaluation of R4 does not require any �ring 
ondition and will always gen-erate a predi
tion.The OpCost for a 
onne
tion is the total 
omputational 
ost of all uniquefeatures used before a predi
tion is made. If any level 3 features (of 
ost 100) areused at all, the 
ost is 
ounted only on
e sin
e all level 3 features are 
al
ulatedin one fun
tion 
all.This evaluation s
heme is further motivation for our 
hoi
e of learning R1�3as un-ordered rulesets. If R1�3 were learned as ordered rulesets, a normal 
on-ne
tion 
ould not be predi
ted until R4 sin
e the default normal rules of theserulesets would be less a

urate than the default rule of R4. OpCost is thus re-du
ed, resulting in greater system throughput, by only using low 
ost featuresto predi
t normal 
onne
tions.The pre
ision and threshold values 
an be obtained during model trainingfrom either the training set or a separate hold-out validation set. Threshold1 Pre
ision des
ribes how a

urate a predi
tion is. Pre
ision is de�ned as p = jP\W jjP j ,where P is the set of predi
tions with label i, and W is the set of all instan
es withlabel i in the data set.



values are set to the pre
isions of R4 on that dataset. Pre
ision of a rule 
an beobtained easily from the positive, p, and negative, n, 
ounts of a rule, pp+n . Thethreshold value will, on average, ensure that the predi
tions emitted by the �rstthree rulesets are not less a

urate than using R4 as the only hypothesis.3.2 Redu
ing Consequential CostTheMetaCost algorithm, introdu
ed by Domingos [3℄, has been applied to redu
eCCost. MetaCost re-labels the training set a

ording to the 
ost-matrix and de-
ision boundaries of RIPPER. Instan
es of intrusions withDCost(i) < RCost(i)or a low probability of being learned 
orre
tly will be re-labeled as normal.4 Experiments4.1 DesignOur experiments use data that were distributed by the 1998 DARPA evaluation,whi
h was 
ondu
ted by MIT Lin
oln Lab. The data were gathered from amilitary network with a wide variety of intrusions inje
ted into the network overa period of 7 weeks. The data were then pro
essed into 
onne
tion re
ords usingMADAM ID. The pro
essed re
ords are available from the UCI KDD repositoryas the 1999 KDD Cup Dataset [11℄. A 10% sample was taken whi
h maintainedthe same distribution of intrusions and normal 
onne
tions as the original data.2 We used 80% of this sample as training data. For infrequent intrusions inthe training data, those 
onne
tions were repeatedly inje
ted to prevent thelearning algorithm from negle
ting them as statisti
ally insigni�
ant and notgenerating rules for them. For overwhelmingly frequent intrusions, only 1 out of20 re
ords were in
luded in the training data. This is an ad ho
 approa
h, butprodu
ed a reasonable ruleset. The remaining 20% of our sample data were leftunaltered and used as test data for evaluation of learned models. Table 3 showsthe di�erent intrusions present in the data, the 
ategory within our taxonomythat ea
h belongs to, and their sampling rates in the training data.We used the training set to 
al
ulate the pre
ision for ea
h rule and thethreshold value for ea
h 
lass label. We experimented with the use of a hold-outvalidation set to 
al
ulate pre
isions and thresholds. The results (not shown) aresimilar to those reported below.4.2 MeasurementsWe measure expe
ted operational and 
onsequential 
osts in our experiments.The expe
ted OpCost over all o

urren
es of ea
h 
onne
tion 
lass and the aver-age OpCost per 
onne
tion over the entire test set are de�ned as P
2Si OpCost(
)jSij2 The full dataset is around 743M. It is very diÆ
ult to pro
ess and learn over the
omplete dataset in a reasonable amount of time with limited resour
es given the fa
tthat RIPPER is memory-based and MetaCost must learn multiple bagging modelsto estimate probabilities.



Table 3. Intrusions, Categories and SamplingU2R R2L DOS PRBbu�er over
ow 1 ftp write 4 ba
k 1 ipsweep 1loadmodule 2 guess passwd 1 land 1 nmap 1multihop 6 imap 2 neptune 120 portsweep 1perl 6 phf 3 pod 1 satan 1rootkit 2 spy 8 smurf 120warez
lient 1 teardrop 1warezmaster 1and P
2S OpCost(
)jSj , respe
tively, where S is the entire test set, i is a 
onne
tion
lass, and Si represents all o

urren
es of i in S. In all of our reported results,OpCost(
) is 
omputed as the sum of the feature 
omputation 
osts of all uniquefeatures used by all rules evaluated until a predi
tion is made for 
onne
tion 
.CCost is 
omputed as the 
umulative sum of the 
ost matrix entries, de�ned inTable 1, for all predi
tions made over the test set.4.3 ResultsIn all dis
ussion of our results, in
luding all tables, \RIPPER" is the single modellearned over the original dataset, \Multi-RIPPER" is the respe
tive multiplemodel, \MetaCost" is the single model learned using RIPPER with a MetaCostre-labeled dataset, and \Multi-MetaCost" is the respe
tive multiple model.As shown in Table 5, the average OpCost per 
onne
tion of the single Meta-Cost model is 191, while the Multi-MetaCost model has an average OpCost of5.78. This is equivalent to the 
ost of 
omputing only a few level 1 features per
onne
tion and o�ers a redu
tion of 97% from the single ruleset approa
h. Thesingle MetaCost model is 33 times more expensive. This means that in pra
ti
ewe 
an 
lassify most 
onne
tions by examining the �rst three pa
kets of the 
on-ne
tion at most 6 times. Additional 
omparison shows that the average OpCostof the Multi-RIPPER model is approximately half as mu
h as that of the singleRIPPER model. This signi�
ant redu
tion by Multi-MetaCost is due to the fa
tthat R1�3 a

urately �lter normal 
onne
tions (in
luding low-
ost intrusions re-labeled as normal), and a majority of 
onne
tions in real network environmentsare normal. Our multiple model approa
h thus 
omputes more 
ostly featuresonly when they are needed to dete
t intrusions with DCost > RCost. Table 4lists the detailed average OpCost for ea
h 
onne
tion 
lass. It is important tonote that the di�eren
e in OpCost between RIPPER and MetaCost models isexplainable by the fa
t that MetaCost models do not 
ontain (possibly 
ostly)rules to 
lassify intrusions with DCost < RCost.Our CCost measurements are shown in Table 6. As expe
ted, both MetaCostand Multi-MetaCost models yield a signi�
ant redu
tion in CCost over RIPPERand Multi-RIPPER models. These redu
tions are both approximately 30%. The
onsequential 
osts of the Multi-MetaCost and Multi-RIPPER models are alsoslightly lower than those of the single MetaCost and RIPPER models.



Table 4. Average OpCost per Conne
tion ClassMulti- Multi-IDS RIPPER RIPPER MetaCost MetaCostba
k 223 143 191 1bu�er over
ow 172 125.8 175 91.6ftp write 172 113 146 71.25guess passwd 198.36 143 191 87imap 172 107.17 181 108.08ipsweep 222.98 100.17 191 1land 132 2 191 1loadmodule 155.33 104.78 168.78 87multihop 183.43 118.43 182.43 100.14neptune 223 100 191 1nmap 217 119.63 191 1normal 222.99 111.14 190.99 4.99perl 142 143 151 87phf 21 143 191 1pod 223 23 191 1portsweep 223 117.721 191 1rootkit 162 100.7 155 63.5satan 223 102.84 191 1smurf 223 143 191 1spy 131 100 191 46.5teardrop 223 23 191 1warez
lient 223 140.72 191 86.98warezmaster 89.4 48.6 191 87Table 5. Average OpCost per Conne
tionRIPPER Multi-RIPPER MetaCost Multi-MetaCostOpCost 222.73 110.64 190.93 5.78Table 6. CCost and Error RateRIPPER Multi-RIPPER MetaCost Multi-MetaCostCCost 42026 41850 29866 28026Error 0.0847% 0.1318% 8.24% 7.23%



Table 7. Pre
ision and Re
all for Ea
h Conne
tion ClassMulti- Multi-RIPPER RIPPER MetaCost MetaCostTP 1.0 1.0 0.0 0.0ba
k p 1.0 1.0 na naTP 1.0 1.0 0.8 0.6bu�er over
ow p 1.0 1.0 0.67 0.75TP 1.0 0.88 0.25 0.25ftp write p 1.0 1.0 1.0 1.0TP 0.91 0.91 0.0 0.0guess passwd p 1.0 1.0 na naTP 1.0 0.83 1.0 0.92imap p 1.0 1.0 1.0 1.0TP 0.99 0.99 0.0 0.0ipsweep p 1.0 1.0 na naTP 1.0 1.0 0.0 0.0land p 1.0 1.0 na naTP 1.0 1.0 0.44 0.67load module p 0.9 1.0 1.0 1.0TP 1.0 1.0 1.0 0.86multihop p 0.88 0.88 0.88 1.0TP 1.0 1.0 na naneptune p 1.0 1.0 na naTP 1.0 1.0 0.0 0.0nmap p 1.0 1.0 na naTP 0.99 0.99 0.99 0.99normal p 0.99 0.99 0.92 0.93TP 1.0 1.0 1.0 1.0perl p 1.0 1.0 1.0 1.0TP 1.0 1.0 0.0 0.0phf p 1.0 1.0 na naTP 1.0 1.0 0.0 0.0pod p 0.98 0.98 na naTP 0.99 0.99 0.0 0.0portsweep p 1.0 1.0 na naTP 1.0 0.6 0.5 0.2rootkit p 0.77 1.0 0.83 1.0TP 1.0 0.98 0.0 0.0satan p 0.99 0.99 na naTP 1.0 1.0 0.0 0.0smurf p 1.0 1.0 na naTP 1.0 1.0 0.0 0.0spy p 1.0 1.0 na naTP 1.0 1.0 0.0 0.0teardrop p 1.0 1.0 na naTP 0.99 0.99 0.0 0.9warez
lient p 1.0 1.0 na 1.0TP 0.6 0.6 0.0 0.0warezmaster p 1.0 1.0 na naTable 8. Comparison with f
s-RIPPERMulti- f
s-RIPPERMetaCost MetaCost ! = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0OpCost 5.78 191 151 171 191 181 181 161 161 171 171 171



The detailed pre
ision and TP3 rates of all four models are shown in Table 7for di�erent 
onne
tion 
lasses. The values for the single 
lassi�er and multiple
lassi�er methods are very 
lose to ea
h other. This shows that the 
overagesof the multiple 
lassi�er methods are identi
al to those of the respe
tive single
lassi�er methods. It is interesting to point out that MetaCost fails to dete
twarez
lient, but Multi-MetaCost is highly a

urate. The reason is that R4 
om-pletely ignores all o

urren
es of warez
lient and 
lassi�es them as normal.The error rates of all four models are also shown in Table 6. The error ratesof MetaCost and Multi-MetaCost are mu
h higher than those of RIPPER andMulti-RIPPER. This is be
ause many intrusions with DCost < RCost are re-labeled as normal by the MetaCost pro
edure. Multi-RIPPERmis
lassi�ed su
hintrusions more often than RIPPER, whi
h results in its slightly lower CCostand slightly higher error rate. Multi-MetaCost 
lassi�es more intrusions 
orre
tly(warez
lient, for example) and has a lower CCost and error rate than MetaCost.4.4 Comparison with f
s-RIPPERIn previous work, we introdu
ed a feature 
ost-sensitive method, \f
s-RIPPER",to redu
e OpCost [8, 9℄. This method favors less 
ostly features when 
onstru
t-ing a ruleset. Cost sensitivity is 
ontrolled by the variable ! 2 [0; 1℄ and sensi-tivity in
reases with the value of !. We generated a single ordered ruleset usingdi�erent values of ! with f
s-RIPPER. In Table 8, we 
ompare the average Op-Cost over the entire test set for the proposed multiple 
lassi�er method with thatof f
s-RIPPER. We see that f
s-RIPPER redu
es the operational 
ost by approx-imately 10%, whereas Multi-MetaCost redu
es this value by approximately 97%.The expe
ted 
ost of Multi-MetaCost is approximately 30 times lower than thatof f
s-RIPPER, RIPPER, and MetaCost. This di�eren
e is signi�
ant.5 Related WorkMu
h resear
h has been done in 
ost-sensitive learning, as indi
ated by Tur-ney's online bibliography [13℄. Within the subset of this resear
h whi
h fo
useson multiple models, Chan and Stolfo proposed a meta-learning approa
h to re-du
e 
onsequential 
ost in 
redit 
ard fraud dete
tion [1℄. MetaCost is anotherapproa
h whi
h uses bagging to estimate probabilities. Fan et al. proposed avariant of AdaBoost for mis
lassi�
ation 
ost-sensitive learning [4℄. Within re-sear
h on feature-
ost-sensitive learning, Lavra
 et al. applied a hybrid geneti
algorithm e�e
tive for feature elimination [6℄.Credit 
ard fraud dete
tion, 
ellular phone fraud dete
tion and medi
al diag-nosis are related to intrusion dete
tion be
ause they deal with dete
ting abnor-mal behavior, are motivated by 
ost-saving, and thus use 
ost-sensitive modeling3 Unlike pre
ision, TP rate des
ribes the fra
tion of o

urren
es of a 
onne
tion 
lassthat were 
orre
tly labeled. Using the same notation as in the de�nition of pre
ision,TP = P\WW .



te
hniques. Our multiple model approa
h is not limited to IDSs and is appli
ablein these domains as well.In our study, we 
hose to use an indu
tive rule learner, RIPPER. However,the multiple model approa
h is not restri
ted to this learning method and 
anbe applied to any algorithm that outputs a pre
ision along with its predi
tion.6 Con
lusion and Future WorkOur results using a multiple model approa
h on o�-line network traÆ
 analy-sis show signi�
ant improvements in both operational 
ost (a redu
tion of 97%over a single monolithi
 model) and 
onsequential 
osts (a redu
tion of 30% overa

ura
y-based model). The operational 
ost of our proposed multiple model ap-proa
h is signi�
antly lower than that of our previously proposed f
s-RIPPERapproa
h. However, it is desirable to implement this multiple model approa
h ina real-time IDS to get a pra
ti
al measure of its performan
e. Sin
e the averageoperational 
ost is 
lose to 
omputing at most 6 level 1 features, we expe
t eÆ-
ient real-time performan
e. The moral of the story is that 
omputing a numberof spe
ialized models that are a

urate and 
ost-e�e
tive for parti
ular sub
lassesis demonstrably better than building one monolithi
 ID model.6.1 Future WorkIt was noted in Se
tion 2.2 that we only 
onsider the 
ase where a predi
tionmade by a given model will always result in an a
tion being taken. We haveperformed initial investigation into the utility of using an additional de
isionmodule to determine whether a
tion is ne
essary based upon whether DCost >RCost for the predi
ted intrusion. Su
h a method would allow for 
ustomizable
ost matri
es to be used, but may result in higher OpCost, as the learned modelwould make 
ost-insensitive predi
tions.In o�-line experiments, rulesets are evaluated using formatted 
onne
tionre
ords su
h that rulesets are evaluated after all 
onne
tions have terminated.In real-time exe
ution of ID models, a major 
onsideration is to evaluate rulesetsas soon as possible for timely dete
tion and response. In other words, we need tominimize the dete
tion delay. To a
hieve this, we 
an �rst translate ea
h of therulesets produ
ed by our multiple model approa
h, ea
h using di�erent levelsof features, into multiple modules of a real-time IDS. Sin
e features of di�erentlevels are available and 
omputed at di�erent stages of a 
onne
tion, we 
anevaluate our multiple models in the following manner: as the �rst pa
kets arrive,level 1 features are 
omputed and R1 rules are evaluated; if a rule evaluates totrue and that rule has suÆ
ient pre
ision, then no other 
he
king for the 
on-ne
tion is done. Otherwise, as the 
onne
tion pro
eeds, either on a per-pa
ketbasis or multi-pa
ket basis, level 2 features are 
omputed and R2 rules are eval-uated. This pro
ess will 
ontinue through the evaluation of R4 until a predi
tionis made. Our 
urrent single model approa
h 
omputes features and evaluatesrulesets at the end of a 
onne
tion. It is thus apparent that this multiple model



approa
h will signi�
antly redu
e the dete
tion delay asso
iated with the singlemodel approa
h. However, it remains to be seen whether additional operational
ost will be in
urred be
ause we must trigger the 
omputation of various featuresat di�erent points throughout a 
onne
tion. We plan to experiment in the real-time evaluation of our multiple model approa
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