
APEx: Automated Inference of Error Specifications
for C APIs

Yuan Kang
Columbia University, USA

yuanjk@cs.columbia.edu

Baishakhi Ray
University of Virginia, USA

rayb@virginia.edu

Suman Jana
Columbia University, USA

suman@cs.columbia.edu

ABSTRACT

Although correct error handling is crucial to software robustness
and security, developers often inadvertently introduce bugs in error
handling code. Moreover, such bugs are hard to detect using exist-
ing bug-finding tools without correct error specifications. Creating
error specifications manually is tedious and error-prone. In this
paper, we present a new technique that automatically infers error
specifications of API functions based on their usage patterns in C
programs. Our key insight is that error-handling code tend to have
fewer branching points and program statements than the code im-
plementing regular functionality. Our scheme leverages this prop-
erty to automatically identify error handling code at API call sites
and infer the corresponding error constraints. We then use the er-
ror constraints from multiple call sites for robust inference of API
error specifications. We evaluated our technique on 217 API func-
tions from 6 different libraries across 28 projects written in C and
found that it can identify error-handling paths with an average pre-
cision of 94% and recall of 66%. We also found that our technique
can infer correct API error specifications with an average precision
of 77% and recall of 47%. To further demonstrate the usefulness
of the inferred error specifications, we used them to find 118 previ-
ously unknown potential bugs (including several security flaws that
are currently being fixed by the corresponding developers) in the
28 tested projects.

CCS Concepts

•Software and its engineering → Software libraries and repos-

itories;

Keywords

error handling bugs; specification mining; API errors

1. INTRODUCTION
Reliable software should be able to tolerate a wide variety of

failures. Therefore, reliable software must be designed to behave
gracefully even when lower-level functions (e.g., API functions)
fail [21], otherwise the failure may affect both software availability
and security. Typically, when a failure occurs, the failing func-
tion notifies its caller about the failure and the caller then decides
how to handle such failures in a graceful manner. However, soft-
ware developers often make mistakes and inadvertently introduce
bugs in API error handling code [32, 33]. For example, a sig-
nificant number of security flaws result from incorrect error han-
dling (e.g., CVE-2014-0092 [2], CVE-2015-0208 [3], CVE-2015-
0285 [4], CVE-2015-0288 [5], and CVE-2015-0292 [6]). In fact,
incorrect error handling was listed by the Open Web Application
Security Project (OWASP) as one of the top ten sources of security
vulnerabilities [28].

There are several existing static and dynamic analysis techniques
to automatically detect incorrect handling of API function failures.
For example, several prior projects used dynamic fault injection to
simulate function failures to check whether the test program han-
dles such failures correctly [11, 35, 23]. Another popular approach
for detecting error handling bugs is to use static analysis to check
whether failures are properly detected and handled [33, 17, 20, 19].
For example, EPEx, a system designed by Jana et al. [19], uses
under-constrained symbolic execution to explore error paths and
leverages a program-independent error oracle to detect error han-
dling bugs. However, all such tools need the error specifications of
the API functions as input. The error specification of an API func-
tion indicates whether the function can fail or not, and if so, how
the function communicates a failure to the caller.

Manually generating error specifications is error-prone and te-
dious. It is particularly hard for low-level languages such as C that
do not provide any specialized exception handling mechanisms and
contain only generic channels of communication (e.g., return value,
arguments passed by reference) between the caller and callee func-
tions. Therefore, the developers of each API must decide individu-
ally which values indicate failure. Consequently, the error specifi-
cations are function-specific and may vary widely across functions.
While there are values that intuitively indicate errors, such as neg-
ative integers or NULL pointers, such conventions do not always
hold and thus will result in highly inaccurate specifications. For
example, in OpenSSL, for some API functions 0 indicates errors,
while for others 0 is used to indicate success.

Moreover, some API functions are infallible, i.e. they never re-
turn any error value. A correct error specification should only
contain fallible API functions but it is hard to manually separate
them from the infallible ones. API documentation is one obvi-
ous source for gathering such specifications. However, previous
research has shown that API documentation is often unavailable or
inaccurate [7, 34, 41]. For example, Rubio-González et al. found
1, 700 undocumented error-code instances in Linux file system API
functions [34]. Further, API documentation usually fails to distin-
guish between benign and critical errors which is essential to min-
imize spurious bug reports as benign errors can be safely ignored.

In this paper, we present a novel technique to automatically in-
fer the error specifications for C API functions by analyzing their
usage across multiple applications. The key insight behind our
technique is that when an API function call fails and returns an
error, usually its caller does not continue normal execution and
returns immediately. Error handling code written in C is known
to be significantly more likely to use “goto” statements than regu-
lar code for such control transfers [25]. Therefore, error handling
code in the caller function is more likely to have less branching
points, program statements, and function calls than the code im-
plementing a normal functionality. We leverage such path char-
acteristics to identify error-handling code. In particular, we use

under-constrained static symbolic execution at the caller function
to explore all feasible paths and determine whether a path exer-
cises error handling code or not using on the path’s features. Next,
we extract the constraints on an API function’s return value that
must be satisfied along the paths exercising error handling for that
API function. We call these constraints potential error specifica-

tions. However, these constraints may not be accurate due to either
buggy or over-conservative error handling checks. We minimize
these issues by comparing and contrasting the error constraints for
the same API function extracted from different call sites across dif-
ferent programs. We pick the most common error constraints as the
error specification of the API function. If there is no clear popu-
lar error constraint(s) across the call sites (either the constraints are
different or there are no constraints), we declare that the API func-
tion cannot fail, or the developers do not consider the failure of the
function to be critical.

Using our approach, we generated 93 correct error specifications
for API functions collected from 6 popular C libraries, with a pre-
cision of 77% and a recall of 47%. We also discovered 118 poten-
tial error handling bugs that violate the error specifications across
28 different applications. So far we have reported 17 bugs, out of
which 4 have been fixed.

In summary, the main contributions of our work are as follows.

• To our knowledge, we are the first to notice that the paths per-
forming error handling in C code have unique features (e.g.,

branching points, program statements) that distinguish them
from non-error paths and empirically confirmed this insight.

• Leveraging characteristics of the program paths performing
error handling, we design and implement a novel algorithm,
APEx, to automatically infer error specifications of C API
functions from their usage.

• We conduct a detailed empirical evaluation of APEx’s abil-
ity to automatically infer error specifications for 217 C API
functions from 6 open-source libraries. We found that APEx
has a precision of 77% and a recall of 47%. This improves
significantly over trivial specifications like treating a non-
negative return value as success for OpenSSL API functions,
which only has 12% precision.

• Using these error specifications, we discovered 118 poten-
tial error-handling bugs in 28 real-world applications. So far
we have reported 17 bugs that we thought to have serious
consequences and 4 out of them are already fixed by the de-
velopers.

The rest of the paper is organized as follows. Section 2 describes
the main insight behind our approach using a running example.
Next, in Section 3, we present an empirical study of unique path
characteristics of error handling code. Section 4 discusses APEx’s
methodology for inferring error specifications and Section 6 eval-
uates it. Section 7 discusses related work. Finally, in Section 8,
we examine potential threats that may affect our findings and we
conclude in Section 9.

2. MOTIVATING EXAMPLE
In this section, we provide a high-level overview of our approach

with a running example adapted from the Curl project (see Fig-
ure 1).

In this sample code fragment, the caller function hugehelp

calls four different API functions: inflateInit2, inflate,

1 /* File:tool_hugehelp.c */

2 void hugehelp(...)

3 {

4 if (inflateInit2(...) != 0)

5 return;

6 buf = malloc(...);

7 if (buf != NULL) {

8 while(1) {

9 status = inflate(...);

10 if (status == 0) {

11 ...

12 }

13 else

14 break;

15 }

16 }

17 inflateEnd(...);

18 }

L4:inflateInit2()!=0

L6:buf = malloc()

L7:buf!=Null

L8:while(1)

L9: status = inflate()

L10:status==0

L11. …

L17: inflateEnd()

T

T

F

F

F

T

L18:return

L5:return

begin

end

Figure 1: Sample error handling code and the corresponding Con-

trol Flow Graph (CFG) containing zlib and libc API functions adapted

from Curl. The red, dotted arrows show error branches.

inflateEnd from zlib and malloc from libc. inflate-
Init2 returns a non-zero integer value on error1 (line 4). The
caller function checks for such cases and immediately returns (line
5) in case of an error. If no such error occurs, the execution contin-
ues and calls malloc at line 6. As malloc returns a NULL pointer
in case of a failure, line 7 checks whether malloc was able to allo-
cate memory correctly; if not, it goes directly to line 17 and sub-
sequently returns from the caller function. Otherwise, the regular
execution continues. Another similar error-check for inflate
API call takes place at line 10. Note that inFlateEnd can also
return an error but the developer chose to ignore the error. All the
branches corresponding to error values are shown in red, dotted
lines in Figure 1. The error specifications for the API functions
inflateInit2, inflate, and malloc, based on their usage,
can be expressed as 6= 0, NULL, and 6= 0 respectively. The goal
of this work is to automatically infer such API error specifications
from these usage patterns.

Before we describe our approach, let us introduce some key terms
that we will use in the rest of the paper.

DEFINITION 2.1. Control Flow Graph (CFG): A CFG of a

function in the program is a directed-graph represented by a tu-

ple 〈 N, E 〉. N is the set of nodes, where each node is labeled with

a unique program statement. The edges, E ⊆ N × N, represent pos-

sible flow of execution between the nodes in the CFG. Each CFG

has a single begin, nbegin , and end, nend, node. All the nodes in

the CFG are reachable from the nbegin node and the nend node is

reachable from all nodes in the CFG. [29]

DEFINITION 2.2. Path : A path P is a sequence of nodes 〈 n0,

n1,....nj 〉 in a CFG, such that there exists an edge between nk and

nk+1, i.e. (nk,nk+1) ∈ E, for k = 0,...,j-1 [26].

Figure 1 shows the CFG corresponding to the motivating exam-
ple. The begin and end nodes indicate the start and return/exit from
the function. Every other node corresponds to one program state-
ment as marked with the respective line number. A path exists be-
tween two nodes, if they are connected by edges. For example, as
shown in the Figure, three paths exist between node L7 and L17.
Among all the possible paths that exist in a CFG, we define error
and non-error paths corresponding to an API function as follows:
1zlib error specification:http://lxr.free-electrons.com/source/
include/linux/zlib.h

DEFINITION 2.3. Error Path: For an API function f , an error

path Perr(f) is a path in the CFG of the caller function that starts

from a node containing a function call to f , follows a branch along

which f ’s error conditions are satisfied, and ends at nend.

DEFINITION 2.4. Non-Error Path: For an API function f , a

non-error path Pnerr(f) is a path in the CFG of the caller function

that starts from a node containing a function call to f , follows a

branch along which f ’s error conditions are not satisfied, and ends

at nend.

For example, in Figure 1, 〈L4, L5, end〉, 〈L6, L7, L17, L18,
end〉, and 〈L9, L10, L17, L18, end〉 are error paths for API func-
tions inflateInit2, malloc, and inflate respectively. A
CFG can have multiple error and non-error paths for an API func-
tion depending on how many error/non-error values the function
can return and other conditions that are checked along those paths.

DEFINITION 2.5. Fallible/Infallible API Functions: A fallible

API function is a function that can fail due to either internal or

external reasons and, in case of such a failure, notifies its caller

function by setting the API function’s return value to certain error

value(s). The API functions that cannot fail are called infallible

API functions.

Notice that the numbers of statements, function calls and branch-
ing points along the error paths of a fallible API function are lower
than their corresponding non-error paths. For example, the error
path for inflateInit2 (line 4) contains only 2 statements, 1
function call, and 1 branching points. In contrast, a non-error path
〈L4, L6, L7, L8, L9, L10, L17, L18, end〉 has 8 statements, 4 func-
tion calls, and 4 branching points (one while and three if state-
ments). We leverage this insight to design, implement, and evaluate
an algorithm to automatically infer error specifications of the API
functions.

For an API function f , our algorithm works in three steps as
described below.

Step I: Collecting path information from individual call sites.

From the CFG of a caller function f , we collect all the paths that
start from the node corresponding to f ’s call statement. We also
collect the constraints on the return value of f and calculate the
number of statements along each path. Since more paths can only
be generated by more branches, we additionally count the number
of paths that run the call site for each constraint.

Step II: Combining path information across call sites. We
follow the above step for each caller of f across multiple call sites
and combine the collected path information (i.e. constraints on the
return value of f and other path features) based on the different
unique constraints.

Step III: Inferring error specifications using voting. We mark
the paths as potential error paths that have a lower number of paths
satisfying the same return value constraint and statement counts
across all the call sites (see Section 3 for a detailed analysis of the
unique features of error paths). Thus, for API function inflate-
Init2, path 〈 L4, L5, end 〉 will be marked as an error path since
it contains significantly less statements and branching points (and
therefore, less paths with matching constraints) compared to the
non-error paths (see Figure 1). The corresponding constraints will
be inferred as error specifications. For instance, the error condition
6= 0 for API function inflateInit2 will be inferred as its error
specification.

3. EMPIRICAL STUDY OF ERROR PATHS

We conduct an empirical study of error paths to check whether
they have any distinguishing features over non-error paths. Our
intuition behind this comes from the observation that developers
often check whether an error has occurred during the execution of
an API function call before using any of its results; in most error
cases, the caller function short-circuits the execution flow and by-
passes the main logic. Thus, in the caller functions, the error paths
should be simpler, with less logic involved compared to the cor-
responding error-free paths. We measure such path characteristics
in the caller functions by three properties: (i) number of program
statements; (ii) number of function calls contained in the path; and
(iii) number of paths satisfying the same constraint on the return
value of the called function, which approximates the relative num-
ber of branch points. We hypothesize that all these three measures
should be lower along error paths than the corresponding error-free
paths.

3.1 Study Method

Table 1: Study subjects for understanding error path characteristics

#API #call #error #non-error
Library #Project functions sites paths paths

GnuTLS 6 47 702 532 3840
zlib 9 15 134 249 2943

To understand the characteristics of error paths, first we need
to identify the error and non-error paths at each API call site. To
do that, we manually generated error specifications of 47 GnuTLS
functions and 15 zlib functions that are called from 702 and 134 call
sites respectively (see Table 1). Next, we performed under-con-
strained symbolic execution at the caller functions of each API
function to explore the feasible paths. For the paths that invoke
calls to the API functions, we checked the constraints on the return
values of the functions against their corresponding error specifica-
tions. The paths along which only error values can be returned are
marked as error paths, while the paths along which only non-error
values can be returned are marked as non-error paths. We drop
all other cases where we cannot definitely conclude whether they
are error or non-error paths. Thus, in total we compared 532 and
249 error paths in GnuTLS and zlib and 3840 and 2943 non-error
paths in them.

For example, in Figure 1, the error specification of the zlib API
function inflateInit2 is 6= 0. Our analysis will conclude that
path 〈 L4, L5, end 〉 is an error path as the error condition is always
satisfied along that path.

3.2 Characteristics of Error Paths
With the set of identified error and non-error paths, we check

whether error paths have any distinguishing features over non-error
paths. We characterize a program path based on three features: (i)
number of statements executed in the path, (ii) number of functions
called along it, and (iii) number of paths that satisfy the same con-
straint at the call site. Figure 2 summarizes the result.

Number of program statements. The box-plots in Figure 2a show
that in both GnuTLS and zlib, the number of statements executed
along error paths is less than non-error paths. A Wilcoxon non-
parametric test shows that these differences are statistically signif-
icant (see Table 2). Also, Cohen’s D effect sizes between the two
are 1.121 and 0.697 in zlib and GnuTLS respectively, which are
considered to be large and medium.

Number of function calls. Figure 2b shows that for zlib APIs, the
number of function calls in error paths is slightly lower than that

gnutls zlib

10

100

error non−error error non−error

#
s
ta

te
m

e
n
ts

(a) number of program statements executed

●●●

gnutls zlib

1

10

error non−error error non−error

#
fu

n
c
ti
o
n
s

(b) number of functions called

●

●

gnutls zlib

1

10

100

error non−error error non−error

#
b
ra

n
c
h
e
s

(c) number of paths

Figure 2: Characteristics of error vs. non-error paths

Table 2: Comparison between error vs. non-error paths

features Library wilcox.p.value cohendD

#statements
zlib 8.83E-61 1.121 (large)
GnuTLS 1.87E-11 0.697 (medium)

#functions
zlib 1.91E-06 0.326 (small)
GnuTLS 0.128760453 0.039 (negligible)

#paths
zlib 0.005256049 0.568 (medium)
GnuTLS 8.33E-05 0.418 (small)

of non-error paths. A Wilcoxon non-parametric test in Table 2 also
confirms this observation with statistical significance. However,
Cohen’s D effect size shows that the difference is small (0.326). In
contrast, for GnuTLS APIs, we do not see any differences between
the two sets. Thus, overall we may not be able to characterize error
paths based on the number of functions.

Number of paths. According to the box-plots in Figure 2c, in
both GnuTLS and zlib, the number of error paths are less than non-
error paths with statistical significance (see Table 2). Cohen’s D
effect sizes between the two are 0.568 (medium) and 0.418 (small)
for zlib and GnuTLS respectively. This shows that the number of
paths can be a good feature for distinguishing error constraints.

Therefore, we conclude that the number of program statements
are significantly lower in error paths than non-error paths, and that
there are significantly less error paths.

4. METHODOLOGY
This section presents APEx, a tool that automatically infers error

specifications for C APIs. For an API function f and its caller c,
APEx uses under-constrained symbolic execution [30] to explore
all the feasible paths in c that contain a call to f . For each path,
APEx collects the constraints on the return value of f and other
path specific statistics, i.e. number of paths satisfying the same con-
straint and program statements. APEx aggregates such information
over multiple call sites of f . The paths containing fewer paths satis-
fying the same constraint and program statements than average are
identified as potential error paths and corresponding constraints are
marked as the potential error specification of f . Finally, the error
specification of f is decided by a voting algorithm that picks the
most popular constraints from potential error specifications across
different programs. Figure 3 shows APEx’s workflow. The algo-
rithm works in three steps:

Step I. Collecting path information from indi-
vidual call site

For an API function f and a given program p, first APEx identi-
fies f ’s caller functions from p’s call graph. Next, for a caller c,
APEx uses under-constrained symbolic execution [30, 16] to ex-
plore all the feasible paths in c that contain a call to f and collects

information about path features (PF) such as statements and num-
ber of paths. Note that APEx does not gather information about the
number of function calls per explored path because function calls
may not be a distinguishing feature for error paths, as shown in
Section 3.

For path exploration, APEx uses under-constrained symbolic ex-
ecution starting from c as opposed to whole-program symbolic ex-
ecution, thus ignoring the costly path prefix from the main function
to c [30]. This helps APEx remain scalable while analyzing large
target programs at the cost of introducing some spurious paths.
However, since we will combine data from multiple call sites in
Step II, effects of such spurious paths will be minimized.

In particular, while exploring paths from caller c, APEx only in-
cludes paths that start at the API call, end when the caller function
terminates and records statistics about program statements and path
counts that directly appear inside the caller. This allows APEx to
focus on the relevant part of the caller body where error paths differ
from non-error paths. APEx further gathers the constraint (C) on
the return value of f . By limiting the paths within caller functions,
APEx also limits the constraints that APEx gathers for the return
values of the API functions. To maximize the accuracy, APEx de-
lays the evaluation of any unknown, non-constant symbols, until
the symbol is no longer used, or the path has reached the end of the
caller. Delaying evaluation allows APEx to consider all the places
within the caller function that add constraints on the return value
of the API function. The final output from this step represents
a set of paths characterized by the constraints and path-features:
{(C,PF)}.

Also, note that while our discussion and current implementation
only supports constraints on return values, our technique can eas-
ily be extended to infer error specifications of an API function that
transmits error values by modifying an argument passed by refer-
ence.

Step II. Combining path information across call
sites

In this step, we aim to combine the path information (i.e. constraint
and path feature) collected from multiple call sites by comparing
constraints on the return values of an API function.

This is challenging because these constraints are often not identi-
cal. Some constraints are stronger than others. For example, con-
sider the examples shown in Table 3 for the libc API function
stat. The function returns 0 on success and −1 on error 2. How-
ever, while checking for failure, call site A uses the constraint < 0,
while call site B uses the constraint 6= 0. While both are correct,
< 0 is a stronger constraint than 6= 0. While inferring the error
specifications of an API call, APEx picks the one that is used often
in the program, but the stronger constraint, i.e. < 0 in this case, will

2http://linux.die.net/man/2/stat

Step	II.	Combining	

path	informa3on	

across		

call	sites	

Step	III.	Inferring	error	

specs	using	vo3ng	

across	programs	{(Cj,PFj)}

	

Step	I:	…	

		

Call site pi

{(C’,PF’)}

1. Identified

 error paths

2. Inferred

error specs

	

Step	I:	Collec3ng	path	

informa3on	from		

individual	call	site		

		

Call site pj

API Func f

	

Step	I:	…	

		

Call site pk

API Func f

{(Ci,PFi)}

{(Ck,PFk)}

API Func f

Figure 3: APEx’s Workflow

Table 3: Sample code showing error checking of libc API function stat

Program A:
/* File: mutt/mbox.c */

void mbox_reset_atime (CONTEXT *ctx, struct stat *st)

{

...

if (stat (..., ...) < 0)

return;

...

}

Program B:
/* File: tar/gnu/chown.c */

int

rpl_chown (const char *file, uid_t uid, gid_t gid)

{

...

if (stat (..., ...) != 0)

return -1;

...

}

also include the counts of the more inclusive constraint, so that it
is more likely to be chosen. This is critical for the accuracy of our
inferred error specifications. Notice that, such issues only appear in
the case of integers, given that APEx currently supports three types
of return values (bool, pointer, and integer). Booleans and point-
ers cannot have overlapping constraints as APEx currently does not
distinguish between different values of non-NULL pointers.

While combining the path information across call sites of an API
function, APEx splits any overlapping range into multiple, non-
overlapping ranges. For example, a constraint 6= 0 will be repre-
sented by the inclusive ranges [MIN_INT, -1], [1, MAX_INT]. Let
us assume that the return value for a function has the constraint 6= 0
(i.e. [MIN_INT, -1] and [1, MAX_INT]) at one call site and < 0
(i.e. [MIN_INT, -1]) at another call site along two paths; the first
path has s program statements and the second path has s′ program
statements. To compute the aggregate path features across differ-
ent constraints, APEx splits the first constraint into two constraints,
each having 1 path and s program statements. The combined fea-
tures of common constraint [MIN_INT, -1] from the two call sites
will be a path count of 2 and a statement count list of (s, s′) respec-
tively.

The final output of this step will be a combined set of path infor-
mation characterized by constraints and path-features: {(C′, PF ′)}.

Step III. Inferring error specifications using vot-
ing

In this step, APEx aims to identify potential error constraints for a
library function based on the path features. The main decisions are
made in two stages. First, APEx identifies an error constraint from
each project (see Algorithm 1). Then the individual programs vote
for the global decision (see Algorithm 2).

Per-project error constraint inference. In this step, APEx tries
to identify potential error constraints of an API function f for each
project individually, based on the aggregated path features as dis-
cussed in Step-II (see Algorithm 1). In particular, among all the
non-overlapping constraints over all the paths for f , APEx first tries
to identify the constraints for which the total number of paths is at
least one standard deviation lower than the average (line 9-12) of
all the paths. If it fails to identify any such constraint, APEx then
tries to find the constraints whose median statement counts over all
paths in the project is at least one standard deviation lower than
the average (line 13-16). If this too fails, the corresponding project
refrains from global voting.

Global error constraint inference. To infer global error specifi-
cation of an API function f , APEx seeks votes from all the projects
that call the function (line 7 of Algorithm 2). However, if some
callers have too few paths, APEx does not trust them. To ensure
this, APEx considers votes from the projects where the number of
paths starting with a call to f is at least above or equal to the lower
quartile of all such paths across all the projects (line 6). Finally,
APEx calculates the votes for potential error constraints from each
project and picks the constraints which have at least one standard
deviation more votes than the average (line 16). However, if the
number of such error constraints exceeds MaxChoices, APEx de-
clares the API function as infallible (line 13 to 15). Otherwise,
APEx outputs the selected error constraints as the final error spec-
ification. The paths where the error specification are satisfied are
marked as potential error paths.

5. IMPLEMENTATION
We gathered information about the path features using the Clang

static analysis framework [1] (part of the LLVM project) and its
underlying symbolic execution engine. We implemented the pars-
ing and processing logic for error specification inference (i.e. Algo-
rithms 2 and 1) from the path features using Python. Our addition to
Clang consists of 1, 180 lines of C++ code, while the steps written
in Python consist of 7, 063 lines, as measured using SLOCCount
[40]. We give an overview of our modifications to Clang below.

The Clang analyzer symbolically tries to explore all feasible paths
along the control flow graph of an input program. It provides a plat-
form for custom, third-party checkers to monitor different paths and
inspect the corresponding path constraints. A typical checker often
looks for violations of different invariants along a path (e.g., divi-
sion by zero). In case of a violation, the checker reports bugs. We
implement the path gathering process of APEx as a checker inside
the Clang analyzer.

We extended Clang’s symbolic execution engine to perform under-
constrained symbolic execution in each caller function of the API

1 castVote
Input : Library function: f , Project that uses library function f :

Proj
Output: Candidate error specification for function f : C∗

2 ———————————————————————
3 countMap← ∅
4 lengthMap← ∅
5 for each constraint c on the return value of f ∈ Proj do
6 countMap[c]← nBranchProj,f,c

7 lengthMap[c]←MedianStmtCnt(Proj, f, c)
8 end
9 C∗ ← {c : countMap[c] < Avg(countMap \ {c})− stdev}

10 if C∗ 6= ∅ then
11 return C∗

12 end
13 C∗ ← {c : lengthMap[c] < Avg(lengthMap \ {c})− stdev}
14 if C∗ 6= ∅ then
15 return C∗

16 end
17 return ∅

Algorithm 1: Algorithm for extracting potential error constraints

from each project

1 InferSpec
Input : Library function: f , Projects that use library function f :

PROJS
Output: Inferred error specification for function f : Cf

2 ———————————————————————
3 voteMin← lowerQuartile({nPathCnt : Proj ∈ PROJS})
4 voteMap← ∅
5 for each Proj ∈ PROJS do
6 if nPathCntProg,f ≥ voteMin then
7 C∗ ← castVote(f, Proj)
8 for each c ∈ C∗ do
9 voteMap[c]← voteMap[c] + 1

10 end

11 end

12 end
13 if nChoices(voteMap) > MaxChoices then
14 return infallible
15 end
16 return {c : voteMap[c] > Avg(voteMap \ {c}) + stdev}

Algorithm 2: Algorithm for error specification mining

functions. Moreover, in its current form, Clang does not support
extracting the path constraints for each path. We modified Clang’s
constraint manager class to print out the path constraints in text
format.

For each path through the caller function explored by the sym-
bolic execution engine, we collected the following information: (i)
The name of the caller function and the name of the API function(s)
called, and the constraints on API function’s return values. (ii) the
number of program statements, and function calls along the path.
(iii) the number of paths satisfying the constraints on the return val-
ues. Our current prototype implementation supports three types of
constraints for three different data types: (i) a pointer can either be
NULL or not NULL, (ii) constraints on an integer are represented by
a sorted list of non-overlapping ranges, and (iii) a C++ bool type
can be either true or false.

Table 4 shows the performance of APEx for the 5 largest pro-
grams in our data set when run on a machine with 2 Intel Xeon
2.67GHz processors with 4 cores each and 24 GB of memory. For
each program-library pair, we counted the time to gather the paths,
generate specifications, and find bugs. For each program, we show
the average times over all the libraries.

Table 4: APEx analysis times for the 5 largest programs in our test set

(averaged over all library APIs) when run on a a machine with 2 Intel

Xeon 2.67 GHz processors with 4 cores each and 24 GB of memory

Project Lines of Code Average analysis time (s)

ClamAV 575104 1h 3m 39s
Pidgin 343416 1h 37m 50s
Grep 285705 6m 59s
GnuTLS 179322 59m 18s
Coreutils 175353 26m 08s

6. EXPERIMENTAL RESULTS
In this section, we present an empirical evaluation of the ability

of APEx to correctly infer error specifications of C API functions.
We also evaluate how effective the inferred error specifications are
for finding new bugs.

6.1 Study Subjects
We studied 6 C libraries (GnuTLS, Libgcrypt, GTK+, libc, Open-

SSL, and zlib) across 28 different projects, as shown in Table 5.
Overall, we analyzed 67 combinations of libraries and software
projects. In general, for a given library, we analyzed the entire
project source code. However, in certain projects, only a part (e.g.,

particular files or modules) uses the relevant library functions. In
such cases, we analyzed only the relevant parts of the project, if
we could isolate them. For example, we analyzed only the files
that use OpenSSL and Libgcrypt for Curl, the modules that use
OpenSSL and zlib for Httpd, and the applications that are included
with OpenSSL using OpenSSL API functions. In total, we studied
217 API functions from 16788 distinct call sites.

6.2 Study Methodology
We measure APEx’s capability of inferring error specifications

in terms of precision and recall. Suppose, we analyzed the usage
of E API functions, using APEx. A perfect tool could infer correct
error specifications for all the cases in E. However, in practice,
APEx will only infer error specifications for APIs A and among
them only A′ will be correct. In this case, we define the precision
and recall of APEx as follows: Precision. The percentage of error
specifications correctly inferred by APEx over the total number of

inferred specifications, i.e.
|A′|

|A|
. Recall. The percentage of error

specifications correctly inferred by APEx over expected number of

the specifications, i.e.
|A′|

|E|
.

To evaluate the accuracy of APEx’s classification of error paths,
we calculate the precision and recall using the same formula. How-
ever, in this case, E, A, and A′ would be the set of all error paths,
detected error paths, and correct error paths respectively.

6.3 Study Results
We start with investigating how well APEx can identify error

paths since the accuracy of inferring error specifications depends on
this step. Thus, we begin with a straightforward question, namely:

RQ1. How accurately can APEx identify error
paths?

Table 6 shows that APEx can identify error paths with 95% pre-
cision and 66% recall. For the GnuTLS, GTK+, and libc libraries,
APEx’s precision is more than 90%. APEx’s precision is over
80% for the Libgcrypt and OpenSSL libraries. However, APEx
does not perform so well for library zlib, with a precision of only
50%. Out of the 4 mistakes in zlib APIs, 2 were cleanup func-

Table 5: Details of study subjects

Project Libgcrypt GnuTLS GTK+ libc OpenSSL zlib

ClamAV - - - 20 (1406) 7 (18) 16 (83)
Collectd 10 (33) - - 20 (764) - -
Coreutils - - - 20 (585) - -
Cryptmount 13 (35) - - 17 (340) - -
cUrl - 4 (4) - 18 (396) 30 (43) 3 (9)
Diff - - - 16 (204) - -
Evince - - 45 (403) 10 (91) - -
Gedit - - 44 (521) 2 (27) - -
GnuPG 1 (1) - - 19 (676) - -
GnuTLS - 47 (680) - 19 (598) - 4 (4)
Grep - - - 12 (123) - -
Httpd - - - 3 (124) 26 (87) 5 (21)
Lighttpd - - - 19 (630) 12 (21) 2 (6)
Lynx - 2 (2) - 18 (1029) 8 (13) 7 (9)
Mutt - 2 (6) - 21 (502) 15 (19) -
Nginx - - - 13 (186) - 3 (7)
OpenSSH - - - 20 (752) 16 (173) 4 (6)
OpenSSL - - - 11 (111) 34 (236) -
Pidgin - 4 (8) 39 (861) 20 (1464) - -
Remmina 8 (14) - 42 (461) 7 (22) - -
RSync - - - 20 (331) - -
Tar - - - 18 (315) - -
Teleport 10 (27) - 2 (3) 6 (15) - -
Tor - - - 18 (666) 29 (74) 4 (11)
Totem - - 40 (356) 6 (68) - -
Uget 1 (1) - 39 (589) 9 (51) - -
VPNC 18 (54) - - 16 (51) - -
Wget - 2 (2) - 21 (340) 18 (20) -

Total 26 (165) 47 (702) 50 (3194) 23 (11867) 52 (704) 19 (156)

Note: Each entry contains studied number of functions per library per project and (number of unique call
sites).

Table 6: Accuracy of predicting error paths

Library Precision Recall

Libgcrypt 0.80 0.82
GnuTLS 0.91 0.26
GTK+ 0.99 0.91
libc 0.96 0.73
OpenSSL 0.86 0.71
zlib 0.50 0.15

All 0.95 0.66

tions: deflateEnd and gzclose, for which APEx incorrectly
picked the value representing success as the error specification. Our
heuristic that error paths are simpler does not tend to work very
well for detecting error specifications of cleanup functions as they
are usually called at the end of main computation, just before re-
turning from the caller function. Therefore, neither the error paths
nor the non-error paths for these cleanup functions performs any
significant amount of computation.

We found that APEx’s recall is more than 70% for libraries Libgcr-
ypt, GTK+, libc, and OpenSSL. However, for libraries zlib and
GnuTLS, APEx’s recall is significantly lower—15% and 26%, re-
spectively. As shown in Table 5, we found that the distribution
of the zlib and GnuTLS API functions are not distributed evenly
across our test projects. While several unique GnuTLS and zlib
functions appear many times in the GnuTLS and ClamAV projects
respectively, not many functions appear elsewhere. Therefore, APEx
cannot infer error specifications for functions that do not have enough
diverse samples.

Result 1: APEx can detect error paths with 95% precision and

66% recall.

RQ2. How accurately can APEx identify API error
specifications?

Table 7 shows that APEx can infer error specifications with 77%
precision and 47% recall on average for all the projects. For all
five libraries except zlib the precision varies from 74% to 84%.
However, for zlib, APEx’s precision drops to 50%. Note that, this
is not particularly surprising given that APEx did not perform well
in detecting error paths for zlib as well (see Table 6) mostly due to
the presence of several cleanup functions.

Table 7: Accuracy of inferring error specifications

Library Precision Recall

Libgcrypt 0.82 0.64
GnuTLS 0.74 0.34
GTK+ 0.84 0.36
libc 0.76 0.65
OpenSSL 0.78 0.62
zlib 0.50 0.27

All 0.77 0.47

APEx’s recall for inferring error specifications is above 62% for
libraries Libgcrypt, libc, and OpenSSL. The recall is around 30%
for the other three libraries. Note that these results closely resemble
the recall for error path detection. As mentioned earlier, the drop
in recall is primarily caused by the low number of call sites across
programs for zlib and GnuTLS APIs.

Since APEx infers error specifications by learning from multi-
ple call sites, next we check how APEx’s performance varies with
the number of call sites, i.e. whether APEx performs better for the
functions with a larger number of call sites.

Figure 4a shows the variation of precision with the number of
distinct call sites of the tested API functions. Overall, as expected,
we see a positive trend (indicated by the blue, dashed line), i.e.

0.72

0.74

0.76

0.78

0.80

0 50 100 150
#call sites

p
re

c
is

io
n

#call sites Spearman Correlation

quantile count estimate p-val

less than 33% less than 8 -0.86 2.61E-08 ***
33% to 66% 8 to 50 0.29 0.15602604
greater than 66% greater than 50 0.98 6.08E-07 ***
all 1 to 1282 0.55 2.71E-07 ***

Note: The Table shows that overall precision increases as the number of call
sites increases with statistical significance (marked with ***); however, this trend
reverses at lower percentile of the call sites.

(a) Precision

0.400

0.425

0.450

0.475

0 50 100 150
#call sites

re
c
a
ll

#call sites Spearman Correlation

percentile count estimate p-val

less than 33% 8 0.03 0.889
33% to 66% 8 to 50 0.29 0.171
greater than 66% 50 0.85 0.000 ***
all 1 to 1282 0.55 0.000 ***

Note: The Table shows that, overall recall increases with statistical significance
(marked with ***) as the number of call sites increases; however, this trend is not
significant below the 66 percentile in call site counts.

(b) Recall

Figure 4: The accuracy of inferring error specifications varies significantly with the number of distinct call sites of the API functions.

precision increases with the increase of call sites. Also, the Spear-
man correlation is positive (0.55) with statistical significance. We
further inspect this trend at three different ranges of call sites: (i)
at lower range (< 33%), with functions having less than 8 dis-
tinct call sites, we see that the precision decreases as the number
of call-sites increases; (ii) at medium range, with functions hav-
ing 8 to 50 distinct call-sites, we see a positive trend, although
it is not statistically significant.; and (iii) finally, at higher range
(> 66%), with call sites more than 50, we see a distinct positive
trend (correlation=0.98) with statistical significance.

A similar trend is observed for recall as well, as shown in Fig-
ure 4b. Overall, recall increases with the number of call sites with
statistical significance (Spearman correlation 0.55). However, it
loses the statistical significance in the lower range.

We further compare APEx’s performance with baseline, trivial
error specifications: < 0 for integers and == NULL for pointers.
The following table shows the results. For integer error return val-
ues, APEx’s precision is 68%, which is 18 percentage points better
than the baseline case. Also, for pointer return values, APEx re-
ports 95% precision, i.e. 5 percentage points better than the base-
line. Overall, APEx performs 13 percentage points better than the
baseline.

Table 8: Comparison of APEx performance with baseline perfor-

mance with trivial error specifications: < 0 for integers and == NULL

for pointers

Baseline APEx

Integer 0.50 0.68
Pointer 0.90 0.95

Overall 0.64 0.77

In particular, APEx is more effective for integer error types, since
they can have more diverse error values as compared to pointer
error types with only NULL and non-NULL options. For library
functions like OpenSSL, where error specifications are more di-
verse, APEx becomes more effective. For example, in OpenSSL,
APEx could detect integer error specifications with 62% precision,

as opposed to the baseline performance of 12%, or an overall 50
percentage point gain in the precision.

Result 2: APEx can infer error specifications with 77% preci-

sion and 47% recall. Overall accuracy increases as the number

of call sites increases.

RQ3. How effectively can APEx detect missing er-
ror checks?

Table 9: Precision of detecting potential error handling bugs

Unfiltered Filtered Real

Library Bugs Bugs Bugs Precision

Libgcrypt 59 7 2 0.286
GnuTLS 52 32 19 0.594
GTK+ 825 - -
libc 2243 93 66 0.710
OpenSSL 51 38 26 0.684
zlib 26 5 5 1.000

Total 3256 175 118 0.674

In order to measure the effectiveness of the inferred specifica-
tions in finding error handling bugs, we build a simple bug detec-
tion scheme using the inferred specifications. Given a fallible API
function and its inferred error specification, we investigate whether
a caller of the API function checks the errors returned by the API
function correctly; If not, we report it as a potential error-handling

bug. In Table 9, column “Unfiltered Bugs” shows the counts. In
total, we found 3, 256 cases of missing error checks. However, not
all missing checks lead to potential bugs. We randomly selected 50
such cases, and manually checked the call site to determine whether
the error could occur, given the information we can observe about
the caller function up to the call. If so, we classified the missing
check as a potential bug. In practice, the bug might still not occur
because of checks further up the call trace, or configurations that
eliminate potential failures. We concluded that only 36 of them can
be potential bugs. Most of the errors are caused due to either incor-
rectly inferred error specifications (e.g., libc function strerror

Table 10: Samples of confirmed error-handling bugs reported by
APEx.

Example 1
Library : OpenSSL

Projects : Lynx, Mutt
API function: SSL_CTX_new

Status: Acknowledged and Fixed

static int ssl_socket_open (CONNECTION * conn)

{

...

data->ctx = SSL_CTX_new (SSLv23_client_method ());

/* disable SSL protocols as needed */

if (!option(OPTTLSV1))

{

SSL_CTX_set_options(data->ctx, SSL_OP_NO_TLSv1);

}

...

}

Example 2
Library : GnuTLS

Projects : Pidgin
API function: gnutls_x509_crt_init

Status: Acknowledged, Fixed, and CVE being requested

static PurpleCertificate *

x509_import_from_datum(const gnutls_datum_t dt, gnutls_x509_crt_fmt_t

mode)

{

...

gnutls_x509_crt_init(&(certdat->crt));

...

}

Example 3
Library : Libgcrypt

Projects : Collectd, Remmina, VPNC
API function: gcrypt_control

Status: Acknowledged and Fixed in Remmina

gcry_control (GCRYCTL_SET_THREAD_CBS, ...);

gcry_control (GCRYCTL_INIT_SECMEM, ..., ...);

is actually infallible but was incorrectly classified by APEx to have
an error specification of =NULL) or for functions which only fail if
they are called with incorrect input values (e.g., Libgcrypt function
gcry_cipher_setiv).

In order to detect error handling bugs with more serious conse-
quences, we filter out functions whose return values are unchecked
for a significant majority of the call sites in a function. By signifi-
cant, we mean, as in our error specification voting scheme, that the
number of call sites that never check the return value is at least one
standard deviation higher than that of the remaining sites. We fur-
ther excluded the library GTK+ in this step, as most of the GTK+
API functions only return error when invoked with invalid inputs
and most of the input values are already checked before calling the
API functions. The third column of Table 9 (see the column “Fil-
tered Bugs”) shows the reported bugs. In total, we reported 175
missing error checks, and a manual investigation reveals 118 of
them as potential error-handling bugs. Thus overall we can detect
potential error-handling bugs with 67.4% precision. Among them
we performed best for zlib with a precision of 100%. We performed
poorly for Libgcrypt functions with only 28.6% precision due to
the prevalence of formatting functions such as gcry_mpi_scan
that never fail when invoked with a valid format string.

We are now in the process of reporting these bugs to the develop-
ers. So far, we have reported 17 bugs. Among them, 4 have already
been patched by the developers. We provide the details of three
example bugs that developers confirmed in Table 10.

Example 1 of Table 10 shows that the return value for OpenSSL
API function SSL_CTX_new was stored in data->ctx with-

out any checking. It subsequently was passed as an argument into
the API function SSL_CTX_set_options. The latter function
would crash when a NULL pointer is returned by a failed call to
SSL_CTX_new. APEx detected 3 instances of this bug in projects
Lynx and Mutt. All the instances are acknowledged by the corre-
sponding developers. The Mutt developers have already fixed the
code while the Lynx developers are in the process of fixing it. 3

Example 2 of Table 10 shows a bug found in project Pidgin,
where a check was missing for the GnuTLS API function gnutls-
_x509_crt_init. In case of a failure, the function returns an
error and a missing check renders the certificate certdat->crt
invalid. The developers acknowledged and fixed this bug. Given
the security sensitive nature of this bug, the developers have also
reserved a CVE-ID (Common Vulnerabilities and Exposures Iden-
tifier 4), CVE-2016-1000030, for it.

Finally, for Libgcrypt (example 3), APEx found 6 instances of
missing checks for API function gcry_control in projects Col-
lectd, Remmina, and VPNC. gcry_control is a variadic func-
tion that takes at least one argument, and is fallible for arguments
GCRYCTL_SET_THREAD_CPS and GCRYCTL_INIT_SECMEM.
The latter is of particular importance not only for enabling secure
memory but also dropping program privileges 5. Currently, we
have one acknowledgment for this kind of bug from the devel-
opers at Remmina, who used the GCRYCTL_SET_THREAD_CBS
command, and have fixed the bug. 6

Result 3: Using APEx’s error specifications, 118 new error-

handling bugs were detected.

We found that incorrect error handling is pervasive for certain
API functions. In fact, errors in such API functions are routinely
ignored in the majority of their call sites. Table 11 shows some
examples from OpenSSL and GnuTLS libraries where more than
50% of their call sites fail to perform correct error handling.

Table 11: Sample API functions for which ≤ 50% of the call sites

performed correct error checking

Library Function call sites with correct error checking (%)

GnuTLS gnutls_x509_crt_get_dn_by_oid 21%

OpenSSL

X509_NAME_get_entry 25%
SSL_shutdown 29%
SSL_write 47%
SSL_do_handshake 50%
SSL_get_privatekey 50%

7. RELATED WORK
Static detection of error handling bugs. Static code checkers

take source code and invariants as input and determine whether the
specifications are violated [18, 13]. There is a long line of work
using static analysis techniques for detecting different types of bugs
including security bugs [10, 9, 14]. In this paper, we primarily
focus on techniques whose primary goal is to find error handling
bugs.

There are several prior projects that designed specialized static
bug finding tools for finding error handling bugs. For example,

3https://dev.mutt.org/hg/mutt/rev/00c0c155d992
4https://cve.mitre.org/
5https://gnupg.org/documentation/manuals/gcrypt-
devel/Controlling-the-library.html
6https://github.com/FreeRDP/Remmina/issues/830#
issuecomment-208383995

Rubio-González et al. [33] and Gunawi et al. [17] created static
bug finders for detecting error handling bugs in Linux file system
code. Lawall et al. [20] built and evaluated another static bug find-
ing tool for finding error handling bugs in Secure Sockets Layer
(SSL) implementations. Weimer et al. [37, 39] have developed bug
finding tools for finding exception handling bugs in Java programs.
Robillard et al. [31, 32] have built tools for simplification and visu-
alization of exception handling flow that can help developers mini-
mize mistakes in exception handling code.

The error specifications inferred by APEx can be used with exist-
ing bug finding techniques like the ones described above for finding
error handling bugs.

Dynamic fault injection. As error conditions rarely appear dur-
ing regular operation, finding error handling bugs is hard using
regular testing methods. To avoid such issues, researchers have
used fault injection to dynamically exercise error handling code in
a program by injecting synthetic failures. Marinescu et al. have
developed a general-purpose fault injection infrastructure for run-
ning tests with injected faults [22, 23, 24]. Broadwell et al. applied
fault injection to test the recovery mechanisms of live systems [11],
while Süßkraut et al. used fault injection for determining where
patches are required to insert proper error handling code [35]. How-
ever, all these fault injection techniques require fault profiles for de-
ciding which functions can fail and what values will be returned in
case of failures. APEx can make dynamic fault injection techniques
completely automated as the fault profiles can be auto-generated
from the error specifications.

Specification mining. The closest work to ours for automati-
cally mining error specifications is by Acharya et al. [7]. However,
they assumed that error handling code must be completely con-
tained inside a branch statement conditional on the return value of
an API function and must have an explicit return/exit statement. In
such cases, they identify the corresponding branch condition as the
API’s error specifications. However, unlike APEx, this heuristic
does not work for functions that can return multiple error or non-
error values. Also, unlike us, they used a data-flow insensitive code
analysis technique based on [13] that limits their accuracy.

Rubio-González et al. [34] and Marinescu et al. [23, 24] have
used program-specific heuristics (e.g., a fixed range of error values,
treating all compiler-generated constants as error codes) to infer
API error specifications in their respective settings that do not work
across different libraries/programs. Unlike these techniques, APEx
focuses on inferring the API error specifications (i.e. the range of
possible error values) from a large number of programs in an auto-
mated manner that works for a diverse set of APIs/projects.

Several prior research projects have mined different types of spec-
ifications from source code to help software developers. For exam-
ple, Buse et al. try to aid developers in properly handling errors by
inferring the exact causes of the exceptions [12]. Acharya et al.

[8] attempted to learn the proper order for calling API functions,
while Nguyen et al. [27] focused on automatically discovering API
preconditions. More generally, for inferring proper programming
practices, Engler et al. [15] sought to infer assumptions that the
programmer makes and check if any code contradicts such beliefs.
Weimer et al. assumed that the programmer’s desired specifica-
tions can be inferred specifically from normal, presumably non-
buggy code and then compared against potentially-buggy excep-
tional cases [38]. Our work complements these projects by focus-
ing on automated inference of error specifications that can be used
to find bugs in error handling code.

Another line of research tries to automatically infer API speci-
fications from documentation (e.g., user manuals, comments, etc.)
using natural language processing [42, 36]. However, unlike min-

ing specifications from API usage, these approaches are susceptible
to errors/omissions in documentation.

8. THREATS TO VALIDITY
External validity. External validity concerns the generalizabil-

ity of our result. The effectiveness of our technique may be limited
by the representativeness of our data set. To minimize this threat we
tested our technique on 217 functions from 6 popular open source
APIs across 28 programs. However, other APIs that are closed
source or more specialized might have their own requirements for
handling errors that contradict our observations.

Construct validity. APEx works on the assumption that error
paths have distinct features from non-error paths. However, this
may not be true for all functions. In fact, we already observed
two types of functions that are different: cleanup functions and in-
fallible functions returning invalid-looking values. As we observed
before, half of the false error specifications in zlib are cleanup func-
tions and other functions that come at the end of the caller. While
we still expect the error handling code to be minimal, the normal
path is likely going to be even simpler for the cleanup routines,
because the caller intends to use them at the end of a task. Infal-
lible functions could return values that appear invalid and need to
be checked, but not due to failures of the function. For example,
boolean return values from infallible functions are almost always
used in conditional statements. If one value leads to more complex
branches, the function may be classified as fallible, as was the case
of gtk_widget_get_visible in GTK+. Likewise, memset
and memcpy from libc return the first parameter, which could be
NULL. If the caller decides to check it after the call, the NULL value
would be attributed to a failure of the API function. To minimize
such threats, we perform an empirical study in Section 3 and show
that, for the majority of the API functions, error paths indeed show
distinctive traits.

Internal validity. The precision of our bug finding results is
based on the authors’ judgment. Although multiple authors verified
the bugs, we are planning to report these bugs to the corresponding
developers and already have started the process. As mentioned ear-
lier, several of them have already been acknowledged and fixed by
the developers.

9. CONCLUSIONS
In this paper, we introduced APEx, a tool for automatically infer-

ring the error specifications of API functions based on the insight
that error paths are often simpler than regular paths (i.e. they have
lower numbers of branches, statements, and functions). We eval-
uated our technique over 28 projects using 6 popular libraries and
demonstrated that our technique can accurately infer error specifi-
cations for different API functions. We also used the inferred spec-
ifications to find 118 previously unknown potential error handling
bugs in the 28 tested projects.

10. ACKNOWLEDGEMENTS
This work is sponsored in part by Air Force Office of Scien-

tific Research (AFOSR) grant FA9550-12-1-0162. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of AFOSR.

11. REFERENCES

[1] Checker developer manual. http://clang-analyzer.llvm.org/checker_
dev_manual.html.

[2] CVE-2014-0092. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0092, 2014.

[3] CVE-2015-0208. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-0208, 2015.

[4] CVE-2015-0285. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-0285, 2015.

[5] CVE-2015-0288. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-0288, 2015.

[6] CVE-2015-0292. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-0292, 2015.

[7] M. Acharya and T. Xie. Mining API Error-Handling Specifications
from Source Code. In International Conference on Fundamental Ap-

proaches to Software Engineering (FASE), 2009.
[8] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API Patterns as Partial

Orders from Source Code: From Usage Scenarios to Specifications.
In ACM SIGSOFT symposium on The foundations of software engi-

neering (FSE), 2007.
[9] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.

Using static analysis to find bugs. IEEE software, 25(5):22–29, 2008.
[10] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugs in the real
world. Communications of the ACM, 53(2):66–75, 2010.

[11] P. Broadwell, N. Sastry, and J. Traupman. FIG: a prototype tool for
online verification of recovery mechanisms. In Workshop on Self-

Healing, Adaptive and Self-Managed Systems, 2002.
[12] R. Buse and W. Weimer. Automatic documentation inference for ex-

ceptions. In International Symposium on Software Testing and Analy-

sis (ISSTA), 2008.
[13] H. Chen and D. Wagner. MOPS: an infrastructure for examining se-

curity properties of software. In ACM Conference on Computer and

Communications Security (CCS), 2002.
[14] B. Chess and J. West. Secure programming with static analysis. Pear-

son Education, 2007.
[15] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant

behavior: A general approach to inferring errors in systems code. In
the ACM Symposium on Operating Systems Principles (SOSP), 2001.

[16] D. Engler and D. Dunbar. Under-constrained execution: making auto-
matic code destruction easy and scalable. In International symposium

on Software testing and analysis (ISSTA), pages 1–4. ACM, 2007.
[17] H. Gunawi, C. Rubio-González, A. Arpaci-Dusseau, R. Arpaci-

Dusseau, and B. Liblit. EIO: Error handling is occasionally correct. In
USENIX Conference on File and Storage Technologies (FAST), 2008.

[18] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM Sigplan

Notices, 39(12):92–106, 2004.
[19] S. Jana, Y. Kang, S. Roth, and B. Ray. Automatically Detecting Er-

ror Handling Bugs using Error Specifications. In USENIX Security

Symposium (USENIX Security), August 2016.
[20] J. Lawall, B. Laurie, R. Hansen, N. Palix, and G. Muller. Finding

error handling bugs in OpenSSL using Coccinelle. In European De-

pendable Computing Conference (EDCC), 2010.
[21] B. H. Liskov and A. Snyder. Exception handling in CLU. IEEE Trans-

actions on Software Engineering, (6):546–558, 1979.
[22] P. Marinescu, R. Banabic, and G. Candea. An extensible technique for

high-precision testing of recovery code. In USENIX Annual Technical

Conference, 2010.
[23] P. Marinescu and G. Candea. Efficient testing of recovery code us-

ing fault injection. ACM Transactions on Computer Systems (TOCS),
29(4), 2011.

[24] P. D. Marinescu and G. Candea. LFI: A practical and general library-
level fault injector. In IEEE/IFIP International Conference on De-

pendable Systems & Networks (DSN), pages 379–388. IEEE, 2009.
[25] M. Nagappan, R. Robbes, Y. Kamei, É. Tanter, S. McIntosh,

A. Mockus, and A. E. Hassan. An empirical study of goto in C code
from GitHub repositories. In 10th Joint Meeting on Foundations of

Software Engineering (FSE), pages 404–414. ACM, 2015.
[26] B. A. Nejmeh. NPATH: a measure of execution path complexity and

its applications. Communications of the ACM, 31(2):188–200, 1988.
[27] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining precon-

ditions of APIs in large-scale code corpus. In ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE),
pages 166–177. ACM, 2014.

[28] OWASP top 10. https://www.owasp.org/images/e/e8/OWASP_Top_
10_2007.pdf.

[29] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In ACM SIGPLAN Notices, volume 46, pages
504–515. ACM, 2011.

[30] D. Ramos and D. Engler. Under-constrained symbolic execution: cor-
rectness checking for real code. In USENIX Security Symposium,
2015.

[31] M. Robillard and G. Murphy. Analyzing exception flow in Java pro-
grams. In ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE), 1999.
[32] M. P. Robillard and G. C. Murphy. Designing robust Java programs

with exceptions. In ACM SIGSOFT Software Engineering Notes, vol-
ume 25, pages 2–10. ACM, 2000.

[33] C. Rubio-González, H. Gunawi, B. Liblit, R. Arpaci-Dusseau, and
A. Arpaci-Dusseau. Error propagation analysis for file systems. In
ACM SIGPLAN conference on Programming Language Design and

Implementation (PLDI), 2009.
[34] C. Rubio-González and B. Liblit. Expect the unexpected: error code

mismatches between documentation and the real world. In PASTE,
2010.

[35] M. Süßkraut and C. Fetzer. Automatically finding and patching bad
error handling. In Sixth European Dependable Computing Conference

(EDCC), pages 13–22. IEEE, 2006.
[36] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* icomment: Bugs or

bad comments?*/. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 145–158, 2007.

[37] W. Weimer and G. Necula. Finding and preventing run-time error han-
dling mistakes. In Annual ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), 2004.
[38] W. Weimer and G. Necula. Mining Temporal Specifications for Error

Detection. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), 2005.
[39] W. Weimer and G. Necula. Exceptional situations and program reli-

ability. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2008.
[40] D. A. Wheeler. Sloccount. Available at http://www.dwheeler.com/

sloccount/, 2015.
[41] H. Zhong and Z. Su. Detecting API documentation errors. In ACM

SIGPLAN Notices, volume 48, pages 803–816. ACM, 2013.
[42] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifi-

cations from natural language API documentation. In International

Conference on Automated Software Engineering (ASE), pages 307–
318, 2009.

