
Anomaly Detetion over Noisy Datausing Learned Probability DistributionsEleazar Eskin eeskin�s.olumbia.eduComputer Siene Department, Columbia University, 450 CS Building, 500 W. 120th st., New York, NY 10027AbstratTraditional anomaly detetion tehniques fo-us on deteting anomalies in new data aftertraining on normal (or lean) data. In thispaper we present a tehnique for detetinganomalies without training on normal data.We present a method for deteting anoma-lies within a data set that ontains a largenumber of normal elements and relatively fewanomalies. We present a mixture model forexplaining the presene of anomalies in thedata. Motivated by the model, the approahuses mahine learning tehniques to estimatea probability distribution over the data andapplies a statistial test to detet the anoma-lies. The anomaly detetion tehnique is ap-plied to intrusion detetion by examining in-trusions manifested as anomalies in UNIXsystem all traes.1. IntrodutionAnomaly detetion is an important problem in in-trusion detetion (Denning, 1987). Intrusion dete-tion is the problem of deteting attaks on systemsby examining various audit data of a system suh asTCP pakets or system logs and di�erentiating be-tween normal users and intruders. Typial approahesto anomaly detetion methods require training overlean data (normal data ontaining no anomalies) inorder to build a model that detets anomalies. Thereare several inherent drawbaks to this approah. The�rst is that lean data is not always easy to obtain.Seond, training over imperfet (noisy) data has seri-ous onsequenes. If there is an intrusion hidden inthe training data, the anomaly detetion method willassume that it is normal and not detet subsequentourrenes. We show empirially that this is the aseby examining two traditional methods for anomaly de-tetion (Warrender et al., 1999). Third, it is diÆultto make these systems adaptive in the sense that they

an train \online" beause they need to train on datawhih must be guaranteed lean.This paper desribes a tehnique for deteting anoma-lies without lean data. The method identi�es anoma-lies buried within the data set. This method makesthe assumption that the number of normal elementsin the data set is signi�antly larger than the numberof anomalous elements. This tehnique an be appliedto a broader lass of problems than intrusion dete-tion. This tehnique was applied to deteting taggingerrors in the Penn Treebank orpus (Eskin, 2000). Thetehnique an also be applied to deteting anomaliesin ativity monitoring problems (Fawett & Provost,1999).We are interested in deteting anomalies inside a dataset for two main reasons. First, one we identify theanomalies, we an apply traditional anomaly detetionmethods using the lean data remaining. By removingthe anomalous elements whih may ontaminate themodel, we an reate better models of the normal data.Seond, the anomalies themselves an be of interest asthey may show rarely ourring events.We present a framework for detetion of anomalies.The problem of anomaly detetion is inherently dif-�ult beause even the nature of an anomaly as wellas why they our in data is disputed. We present aformal mixture model explaining the presene of theanomalies. We then train a mahine learning methodover the data set to obtain a probability distributionover the data. Sine the number of anomalies is verysmall, we �rst assume that every element is normal.Motivated by our model of anomalies, we use the prob-ability distribution to test eah element to determinewhether or not it is an anomaly.For typial problems involving a mixture model, theproblem an be ast as in inomplete data problem andestimated using the EM algorithm (Dempster et al.,1977). However, sine anomalies are extremely rarewith respet to the normal data, we an use the muhsimpler diret approah presented in this paper. Em-



pirially, we show that this approah suÆes for intru-sion detetion data obtained from live environments.In addition, beause the intrusion detetion applia-tion requires real time detetion of anomalies, the ap-proah presented in this paper is favorable beause itan be omputed very eÆiently.We evaluate this method on intrusion detetion data.We examine traes of system alls in proesses in whihsome instanes of the proesses are intrusions. We at-tempt to detet whih of the proesses are intrusionsand whih ones are normal proesses. We ompare themethod presented in this paper with two traditionalmethods of intrusion detetion, stide and t-stide, whihare shown to perform well on lean data (Warrenderet al., 1999). We show that our method performssigni�antly better than the traditional methods overnoisy data. In addition, we show that our method per-forms omparably over noisy data to the performaneof the traditional methods over lean data when thenumber of anomalies in the data is small ompared tothe number of normal elements.2. Related WorkAnomaly detetion is extensively used within the �eldof omputer seurity spei�ally in intrusion detetion(Denning, 1987).Many di�erent approahes to modeling normal andanomalous data have been applied to intrusion de-tetion. A survey and omparison of anomaly dete-tion tehniques is given in (Warrender et al., 1999).Stephanie Forrest presents an approah for modelingnormal sequenes using look ahead pairs (1996) andontiguous sequenes (Hofmeyr et al., 1998). Helmanand Bhangoo (1997) present a statistial method todetermine sequenes whih our more frequently inintrusion data as opposed to normal data. Lee etal. (1997; 1998) uses a predition model trained bya deision tree applied over the normal data. Ghoshand Shwartzbard (1999) use neural networks to modelnormal data. Lane and Brodley (1997; 1998; 1999) ex-amined unlabeled data for anomaly detetion by look-ing at user pro�les and omparing the ativity duringan intrusion to the ativity under normal use.The work most similar to ours in intrusion detetionis a tehnique developed at SRI in the Emerald sys-tem (Javitz & Valdes, 1993). Emerald uses historialreords as its normal training data. Emerald omparesdistributions of new instanes to historial distribu-tions and di�erenes between the distributions signalan intrusion. However, the problem with this approahis that intrusions present in the historial distributions

may ause the system to not detet similar intrusionsin the new instanes.The mixture model presented in this paper for explain-ing the presene of anomalies is typially omputedusing the EM algorithm (Dempster et al., 1977). Asurvey of the literature on the EM algorithm is givenin MLahlan and Krishnan (1997). We use a boot-strap method to detet the anomalies. A survey ofthe bootstrap method is given in Efron and Tibshirani(1993).A related problem to anomaly detetion is the studyof outliers in the �eld of statistis. In statistis,tehniques have been developed for deteting outliersin univariate data, multivariate data, and strutureddata using a given probability distribution. A surveyof outliers in statistis is given in Barnett and Lewis(1994).3. Anomaly Detetion3.1 Data Model for Explaining AnomaliesIn order to motivate a method for deteting anomalies,we must �rst make assumptions about how the anoma-lies our in the data. We use a \mixture model"for explaining the anomalies, one of several popularmodels in statistis for explaining outliers (Barnett &Lewis, 1994). In the mixture model, eah element fallsinto one of two ases: with (small) probability �, theelement is an \anomalous" element and with probabil-ity (1 � �) the element is a \majority" element or anormal element.In intrusion detetion we are assuming that with prob-ability (1��) a given set of system alls is a legitimateuse of the system, while with probability � the set ofsystem alls orresponds to an intrusion.In this framework, there are two probability distribu-tions whih generate the data, a majority distributionand an anomalous distribution. An element xi is ei-ther generated from the majority distribution, M, orwith probability � from the alternate distribution, A.Our generative distribution for the data, D, is then:D = (1� �)M + �A (1)The mixture framework for explaining the presene ofanomalies in the data is independent of the propertiesor types of the distributions M and A.In intrusion detetion M is a strutured probabilitydistribution whih is estimated over the data using amahine learning tehnique. The distribution A is amodel of the anomalous elements. Typially this is a



uniform distribution beause a priori we do not knowwhih elements are anomalies or what they look like.The set of elementsD, generated by distribution,D, ispartitioned into two subsets, M and A, orrespondingto whih elements were generated by distribution Mand whih elements were generated by distribution A.We use the notation Mt (At) to denote the set of nor-mal (anomalous) elements after proessing element xt.Initially, we have not deteted any anomalies so the setof majority elements is the entire data set (M0 = D)and the set of anomaly elements is empty (A0 = ;).3.2 Modeling Probability DistributionsWe an use any mahine learning tehnique to modelthe probability distributions. We assume that for thenormal elements we have a funtion LM whih takesas a parameter the set of normal elements Mt, andoutputs a probability distribution, PMt, over the dataD. Likewise, we have a funtion LA for the anoma-lous elements whih takes as a parameter the set ofanomalous elements At. In other words:PMt(X) = LM (Mt)(X) (2)PAt(X) = LA(At)(X) (3)These funtions LM and LA an be any probabilitymodeling method (i.e. Naive Bayes, Maximum En-tropy, et.) Note that beause the set of anomalies isinitially empty, PA0(X) is the prior probability distri-bution beause there are no elements in the trainingset for the probability modeling method LA.3.3 Detetion of AnomaliesDeteting anomalies, in this framework, is equivalentto determining whih elements were generated by thedistribution A and whih elements were generated bythe distribution M. Elements generated by A areanomalies, while elements generated by M are not.For eah element xt we determine whether it is not ananomaly and should remain in Mt+1 or is an anomalyand should be moved to At+1.In order to make this determination, we examine thelikelihood of the two ases.The likelihood, L, of the distribution D at time t is:Lt(D) = NYi=1PD(xi) = (1� �)jMtj Yxi2Mt PMt(xi)!0��jAtj Yxj2At PAt(xj)1A (4)

For omputational reasons, we ompute the log likeli-hood (LL) at time t:LLt(D) = jMtj log(1� �) + Xxi2Mt log(PMt(xi))+jAtj log� + Xxj2At log(PAt(xj)) (5)In order to determine whih elements are anomalies,we use a general priniple for determining outliers inmultivariate data (Barnett, 1979).We measure how likely eah element xi is an outlierby omparing the di�erene hange in the log likeli-hood of the distribution if the element is removed fromthe majority distribution Mt�1 and inluded with theanomalous distribution At�1. In other words, we ex-amine the hange in LLt if:Mt = Mt�1 n fxtg (6)At = At�1 [ fxtg (7)If this di�erene (LLt � LLt�1) is greater than somevalue , we delare the element an anomaly and per-manently move the element from the majority set tothe anomaly set. Otherwise, the element remains inthe normal distribution.Mt =Mt�1 (8)At = At�1 (9)We repeat this proess for every element and in theend we get a partition of data set into a set of majorityelements and a set of anomalous elements.Note that we have to use the mahine learning methodto reompute the probability distributions PMt andPAt using LM and LA at every step beause of thehange in the sets Mt and At.This test is an invoation of the Neyman-PearsonLemma, hoosing the most likely hypothesis. If  = 0then this test performs stritly a maximum likelihoodtest hoosing the most likely ase of whether or notan element is an anomaly. If the di�erene is greaterthan  then aording to the test it is more likely theelement is an anomaly.The two parameters in this test,  and �, an be set tooptimize performane of this method on a given prob-lem. The hoies are inuened by intuition about theatual anomaly rate and the sensitivity of the problemto mislassi�ed anomalies. The parameter  a�etsthe number of anomalies that are deteted by the sys-tem. With very low values of  only the most extremeanomalies are deteted while with higher values of more elements are delared anomalies.



4. Anomaly Detetion Applied toIntrusion DetetionWe applied the anomaly detetion framework to detetintrusions based on the analysis of proess system alls.We examined two sets of system all data ontainingintrusions.The data analyzed is a set of system all traes fora given program. A trae is the history (or list) ofsystem alls made by a proess of the given programfrom beginning of exeution to the termination of theproess. The arguments to the system alls are ignoredfor the analysis. In both of these sets, there was a setof lean traes and a set of intrusion traes.Typial attaks that we examine were exploits targetedat ertain programs on UNIX mahines. The programsunder attak all run as superuser whih allow for a\user to root" attak. This attak allows an unprivi-leged user to obtain root user privileges. Eah of theseattaks exploits bugs in the programs whih allow forthe hange in user privileges. The underlying premiseis that the sequenes of system alls during an intru-sion are notieably di�erent from normal sequenes ofsystem alls.The �rst set of data is from the BSM (Basi SeurityModule) data portion of the 1999 DARPA IntrusionDetetion Evaluation data reated by MIT LinolnLabs (1999). The data onsists of 5 weeks of BSM dataof all proesses run on a Solaris mahine. We examinedthree weeks of traes of the programs whih were at-taked during that time. The programs attaked were:ejet, ps, and ftp.The seond set of data was obtained from StephanieForrest's group at the University of New Mexio. Thisdata set is desribed in detail in Warrender et al.(1999). This data ontains up to 15 months of nor-mal traes for ertain programs as well as intrusiontraes. The data provides normal and intrusion traesof system alls for several proesses. We examine thedata for the proesses that were attaked with a \userto root" attak. The proesses examined orrespondto the programs: named, xlok, login, and ps.Sine our method assumes that the number of in-trusions is small ompared to the size of the normaldata, we only ompare our method to the traditionalmethods for anomaly detetion over traes of programswhere the intrusions ompose less that 5% of the totalnumber of system alls. Later we show the perfor-mane of our method over traes of programs whihontain a higher perentage of intrusion traes. Tables1 and 2 summarize the data sets and list the numberof system alls and traes for eah program.

4.1 Deteting Anomalies in Sequenes ofSystem CallsWe assumed that when anomalies our, they are ran-dom. Thus we set LA to be a funtion that always re-turns a uniform distribution over all sequenes whihrepresents the anomaly distribution PAt for all t. Weused a �xed order Markov hain probability modelingmethod (LMt) over the urrent set of normal elementsto build the probability model PMt. Any probabil-ity model an be applied to this problem suh as naiveBayes, models estimated using maximumentropy, hid-den Markov models, variable order Markov hains,et.1Our probabilitymodel is omputed by examining whatthe next symbol is following a sequene of a givenlength L by ounting the number of times that symbolfollowed the sequene in the training data. Thus weompute: P (XtjXt�1; Xt�2; ::; Xt�L) (10)In order to avoid probabilities of 0, we use a pseudoount preditor and add an initial value to eah ount.For all of our experiments we used L = 3. In prinipal,L an be set optimally to best estimate the probabilitydistribution.In this appliation, eah element is a single system allin a proess trae. The probability distribution for theelement is onditioned on the the previous L systemalls in the proess trae.Initially we omputed the model over all elements,M0 = D. Then for eah element we omputed thedi�erene in log likelihoods (see Equation 5) to deter-mine whether or not the element is an anomaly.We repeat this proess for every element and in the endwe have partition of the data set into a set of majorityelements and a set of anomalous elements.Note that in prinipal we have to retrain our learningalgorithm at every step to ompute the log likelihood.This an be done eÆiently beause only the elementswith the same preeding sequene need to be reom-puted. In addition, the di�erene in log likelihoodsbetween the two distributions was omputed diretly.Essentially, detetion of intrusions took only 2 passesthrough the data. The �rst pass was to train the prob-ability distributions assuming that every element wasnormal. The seond pass omputed the hange in loglikelihood of the distribution if a given element was de-lared an anomaly. Sine the hange in log likelihood1In fat we obtained slightly better results using SparseMarkov transduers but omitted them from the paper dueto spae onsiderations (Eskin et al., 2000).



Table 1. Linoln Labs Data SummaryProgram # Intrusion # Intrusion # Normal # Normal % IntrusionName Traes System Calls Traes System Calls Traesftpd 1 350 943 66842 0.05%ps (LL) 21 996 208 35092 2.7%ejet 6 726 7 1278 36.3%Table 2. University of New Mexio Data SummaryProgram # Intrusion # Intrusion # Normal # Normal % IntrusionName Traes System Calls Traes System Calls Traesxlok 2 949 72 16,937,816 0.006%named 2 1,800 27 9,230,572 0.01%login 9 4,875 12 8,894 35.4%ps (UNM) 26 4,505 24 6,144 42.3%was omputed eÆiently, the atual omputation tookonly seonds to perform on eah data set.4.2 Baseline Comparison Methods: stide andt-stideWe ompare our method against two methods, stideand t-stide, shown to be e�etive in deteting intru-sions in system all data when trained over lean datain experiments performed on the University of NewMexio data set (Warrender et al., 1999).The sequene time-delay embedding (stide) algorithmkeeps trak of what sequenes were seen in the trainingdata and detets sequenes not seen in training. Themethod builds a model of normal data by making apass through the training data and storing eah uniqueontiguous sequene of a predetermined length in aneÆient manner. We used a length of six beause thatis the length of the sequenes used in the publishedresults of the method.When the method is used to detet intrusions, thesequenes from the test set are ompared to the se-quenes in the model. If a sequene is not found inthe normal model, it is alled a mismath or anomaly.The threshold sequene time-delay embedding (t-stide) algorithm is an extension of the stide algorithmwhih inorporates a threshold. In addition to un-known sequenes, rare sequenes are also ounted asmismathes. In this method, any sequene aountingfor less than 0.001% of the total number of sequenesis onsidered rare.To detet intrusions, these methods ompare the num-ber of mismathes in a loal region of 20 onseutivesequenes. A threshold is set for these loal regions be-tween 1 and 20. If the number of mismathes reahes

or exeeds the loal mismath threshold, the proessis delared an intrusion.4.3 Experimental ResultsWe ompare the performane of the method presentedin this paper with the baseline methods desribedabove. We �rst empirially show that the method pre-sented in this paper out performs the baseline meth-ods when trained over noisy data. Then we empiriallyshow that the performane of this method trained overnoisy data performs omparably to the baseline meth-ods trained over lean data.If a proess trae ontains an anomaly, we delare thatproess an intrusion. We onsider an intrusion de-teted if either the intrusion proess is deteted, or oneof the proesses spawned by the intrusion is deteted.We ompare the anomaly detetion methods in bothsets of experiments using ROC urves whih graph thefalse positive rate versus the detetion rate (Provostet al., 1998). The detetion rate is the perentage ofintrusions whih are deteted. In order to be onsis-tent with previous published results on these data sets,the false positive rate is de�ned to be the perentageof normal system alls whih are delared anomalous(Warrender et al., 1999). The parameter settings ofthe methods are varied to obtain multiple points onthe ROC urve. The ROC urves have few points be-ause of the small amount of intrusion traes in eahdata set.The performane over noisy data were evaluated asfollows. We ombined the intrusion data and the nor-mal data into a single unlabeled data set and appliedour method to detet anomalies. For stide and t-stide,we used the entire data set as both the training setand test set. The stide method, does not detet any
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Figure 1. ROC urves showing a omparison with t-stide over noisy data. The method presented in the paper is labeledAD in eah graph. The urves are shown for all programs where the amount of intrusion system alls ompose less that5% of the data: (a) ftpd, (b) ps, () xlok, and (d) named.anomalies beause every sequene is seen in the train-ing. Thus, no \mismathes" our. Sine the \rare"threshold for the t-stide method is �xed a priori anddetermined by the total number of system alls in thedata set, there is no guarantee that any \rare" se-quenes will appear in he data. In the ase of theftp and ps (LL) programs, no sequene was below thethreshold thus no anomalies were deteted. A ompar-ison of the performane of the t-stide method and ourmethod for eah data set is shown in Figures 1(a){(d).We also ompare the performane of our method overnoisy data to traditional methods over lean data. Thestide and t-stide methods are trained on 1=3 of thelean data and the test set is the remaining data. Fig-ures 2(a){(d) show the performane omparisons.5. AnalysisThe anomaly detetion method presented in this papermakes three important assumptions. The �rst assump-tion is that the normal data an e�etively be modeledusing the probability distribution. The seond is thatthe anomalous elements are suÆiently di�erent fromthe normal elements in order to be deteted. The thirdis that the number of anomalies is small ompared to
the number of number of normal elements.In the ase of intrusion data, both the �rst two as-sumptions hold. System alls for the normal proessesare very regular and an be modeled e�etively. Theintrusion traes are signi�antly di�erent from the nor-mal traes beause the intrusions exploit bugs in theprogram to obtain a root shell. Sine this never hap-pens in normal proesses, the system all traes aresigni�antly di�erent.The third assumption is required so that the anoma-lies an be observed against the bakground of normaldata. If there are too many anomalies, the model ofthe normal distribution will be signi�antly distortedby the anomalies that the anomalies are diÆult to de-tet. We verify this empirially by showing the resultsof the method when applied to data sets whih havea high proportion of intrusion system alls. In thesedata sets, the method does not perform as well. Weompare the ROC urves in Figure 3 to demonstratethat the the method performs better when there arerelatively few intrusions. As expeted on the data setsof the programs whih have few intrusions (ftpd, ps(LL), xlok, named) the method perform better thanon the data sets whih have a high proportion of intru-sions (login, ps (UNM)). The system performs well on
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Figure 2. ROC urves showing the omparison of this method trained over noisy data and stide and t-stide trained overlean data. The method presented in the paper is labeled AD in eah graph. The urves are shown for all programs wherethe amount of intrusion system alls ompose less that 5% of the data: (a) ftpd, (b) ps, () xlok, and (d) named.ejet although there is a high proportion of intrusionsin the data. This may be beause the ejet program istypially always used in the same way. This makes iteasier for the system to learn the normal pattern eventhough there is little data and a signi�ant amount ofnoise.
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6. ConlusionWe have presented a probabilisti approah for de-teting anomalies without a set of normal data. Theapproah leverages the fat that the anomalies arerare within data as ompared to the number of nor-mal elements. This is an improvement over tra-ditional anomaly detetion methods whih requiredlean training data. In many appliations, lean datais diÆult to obtain and diÆult to ensure that it on-tains no anomalies.We evaluated the anomaly detetion approah by ap-plying it to intrusion detetion and ompared it totraditional methods for anomaly detetion. However,the framework presented for deteting anomalies anbe applied to a broader lass of problems. For exam-ple the tehnique an be used to detet errors in largedata sets.Any probability modeling method ould be used fordetetion of anomalies. In addition over sequenes ofsystem alls, di�erent portions of the sequene (begin-ning of a proess versus the end of a proess) an bemodeled separately to obtain more aurate models.In this framework, more aurate probability estima-tions may provide better results in intrusion detetion.
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