Anomaly Detection over Noisy Data
using Learned Probability Distributions

Eleazar Eskin

EESKIN@CS.COLUMBIA.EDU

Computer Science Department, Columbia University, 450 CS Building, 500 W. 120th st., New York, NY 10027

Abstract

Traditional anomaly detection techniques fo-
cus on detecting anomalies in new data after
training on normal (or clean) data. In this
paper we present a technique for detecting
anomalies without training on normal data.
We present a method for detecting anoma-
lies within a data set that contains a large
number of normal elements and relatively few
anomalies. We present a mixture model for
explaining the presence of anomalies in the
data. Motivated by the model, the approach
uses machine learning techniques to estimate
a probability distribution over the data and
applies a statistical test to detect the anoma-
lies. The anomaly detection technique is ap-
plied to intrusion detection by examining in-
trusions manifested as anomalies in UNIX
system call traces.

1. Introduction

Anomaly detection is an important problem in in-
trusion detection (Denning, 1987). Intrusion detec-
tion is the problem of detecting attacks on systems
by examining various audit data of a system such as
TCP packets or system logs and differentiating be-
tween normal users and intruders. Typical approaches
to anomaly detection methods require training over
clean data (normal data containing no anomalies) in
order to build a model that detects anomalies. There
are several inherent drawbacks to this approach. The
first is that clean data is not always easy to obtain.
Second, training over imperfect (noisy) data has seri-
ous consequences. If there is an intrusion hidden in
the training data, the anomaly detection method will
assume that it is normal and not detect subsequent
occurrences. We show empirically that this is the case
by examining two traditional methods for anomaly de-
tection (Warrender et al., 1999). Third, it is difficult
to make these systems adaptive in the sense that they

can train “online” because they need to train on data
which must be guaranteed clean.

This paper describes a technique for detecting anoma-
lies without clean data. The method identifies anoma-
lies buried within the data set. This method makes
the assumption that the number of normal elements
in the data set is significantly larger than the number
of anomalous elements. This technique can be applied
to a broader class of problems than intrusion detec-
tion. This technique was applied to detecting tagging
errors in the Penn Treebank corpus (Eskin, 2000). The
technique can also be applied to detecting anomalies
in activity monitoring problems (Fawcett & Provost,

1999).

We are interested in detecting anomalies inside a data
set for two main reasons. First, once we identify the
anomalies, we can apply traditional anomaly detection
methods using the clean data remaining. By removing
the anomalous elements which may contaminate the
model, we can create better models of the normal data.
Second, the anomalies themselves can be of interest as
they may show rarely occurring events.

We present a framework for detection of anomalies.
The problem of anomaly detection is inherently dif-
ficult because even the nature of an anomaly as well
as why they occur in data is disputed. We present a
formal mixture model explaining the presence of the
anomalies. We then train a machine learning method
over the data set to obtain a probability distribution
over the data. Since the number of anomalies is very
small, we first assume that every element is normal.
Motivated by our model of anomalies, we use the prob-
ability distribution to test each element to determine
whether or not it is an anomaly.

For typical problems involving a mixture model, the
problem can be cast as in incomplete data problem and
estimated using the EM algorithm (Dempster et al.,
1977). However, since anomalies are extremely rare
with respect to the normal data, we can use the much
simpler direct approach presented in this paper. Em-

pirically, we show that this approach suffices for intru-
sion detection data obtained from live environments.
In addition, because the intrusion detection applica-
tion requires real time detection of anomalies, the ap-
proach presented in this paper is favorable because it
can be computed very efficiently.

We evaluate this method on intrusion detection data.
We examine traces of system calls in processes in which
some instances of the processes are intrusions. We at-
tempt to detect which of the processes are intrusions
and which ones are normal processes. We compare the
method presented in this paper with two traditional
methods of intrusion detection, stide and ¢-stide, which
are shown to perform well on clean data (Warrender
et al., 1999). We show that our method performs
significantly better than the traditional methods over
noisy data. In addition, we show that our method per-
forms comparably over noisy data to the performance
of the traditional methods over clean data when the
number of anomalies in the data is small compared to
the number of normal elements.

2. Related Work

Anomaly detection is extensively used within the field
of computer security specifically in intrusion detection

(Denning, 1987).

Many different approaches to modeling normal and
anomalous data have been applied to intrusion de-
tection. A survey and comparison of anomaly detec-
tion techniques is given in (Warrender et al., 1999).
Stephanie Forrest presents an approach for modeling
normal sequences using look ahead pairs (1996) and
contiguous sequences (Hofmeyr et al., 1998). Helman
and Bhangoo (1997) present a statistical method to
determine sequences which occur more frequently in
intrusion data as opposed to normal data. Lee et
al. (1997; 1998) uses a prediction model trained by
a decision tree applied over the normal data. Ghosh
and Schwartzbard (1999) use neural networks to model
normal data. Lane and Brodley (1997; 1998; 1999) ex-
amined unlabeled data for anomaly detection by look-
ing at user profiles and comparing the activity during
an intrusion to the activity under normal use.

The work most similar to ours in intrusion detection
is a technique developed at SRI in the Emerald sys-
tem (Javitz & Valdes, 1993). Emerald uses historical
records as its normal training data. Emerald compares
distributions of new instances to historical distribu-
tions and differences between the distributions signal
an intrusion. However, the problem with this approach
is that intrusions present in the historical distributions

may cause the system to not detect similar intrusions
in the new instances.

The mixture model presented in this paper for explain-
ing the presence of anomalies is typically computed
using the EM algorithm (Dempster et al., 1977). A
survey of the literature on the EM algorithm is given
in McLachlan and Krishnan (1997). We use a boot-
strap method to detect the anomalies. A survey of
the bootstrap method is given in Efron and Tibshirani

(1993).

A related problem to anomaly detection is the study
of outliers in the field of statistics. In statistics,
techniques have been developed for detecting outliers
in univariate data, multivariate data, and structured
data using a given probability distribution. A survey
of outliers in statistics is given in Barnett and Lewis

(1994).

3. Anomaly Detection
3.1 Data Model for Explaining Anomalies

In order to motivate a method for detecting anomalies,
we must first make assumptions about how the anoma-
lies occur in the data. We use a “mixture model”
for explaining the anomalies, one of several popular
models in statistics for explaining outliers (Barnett &
Lewis, 1994). In the mixture model, each element falls
into one of two cases: with (small) probability A, the
element is an “anomalous” element and with probabil-
ity (1 — A) the element is a “majority” element or a
normal element.

In intrusion detection we are assuming that with prob-
ability (1 —A) a given set of system calls is a legitimate
use of the system, while with probability A the set of
system calls corresponds to an intrusion.

In this framework, there are two probability distribu-
tions which generate the data, a majority distribution
and an anomalous distribution. An element z; is ei-
ther generated from the majority distribution, M, or
with probability A from the alternate distribution, A.
Our generative distribution for the data, D, is then:

D= (1-A)M+AA (1)

The mixture framework for explaining the presence of
anomalies in the data is independent of the properties
or types of the distributions M and A.

In intrusion detection M is a structured probability
distribution which is estimated over the data using a
machine learning technique. The distribution A is a
model of the anomalous elements. Typically this is a

uniform distribution because a priori we do not know
which elements are anomalies or what they look like.

The set of elements D, generated by distribution, D, is
partitioned into two subsets, M and A, corresponding
to which elements were generated by distribution M
and which elements were generated by distribution A.
We use the notation M; (A;) to denote the set of nor-
mal (anomalous) elements after processing element ;.
Initially, we have not detected any anomalies so the set
of majority elements is the entire data set (Mg = D)
and the set of anomaly elements is empty (Ag = 0).

3.2 Modeling Probability Distributions

We can use any machine learning technique to model
the probability distributions. We assume that for the
normal elements we have a function £3; which takes
as a parameter the set of normal elements M;, and
outputs a probability distribution, Pyy,, over the data
D. Likewise, we have a function £4 for the anoma-
lous elements which takes as a parameter the set of
anomalous elements A;. In other words:

Par (X) = Ly (M) (X) (2)
Pa,(X) = La(A)(X) (3)

These functions Ly and L£4 can be any probability
modeling method (i.e. Naive Bayes, Maximum En-
tropy, etc.) Note that because the set of anomalies is
initially empty, Pa,(X) is the prior probability distri-
bution because there are no elements in the training
set for the probability modeling method £ 4.

3.3 Detection of Anomalies

Detecting anomalies, in this framework, is equivalent
to determining which elements were generated by the
distribution A and which elements were generated by
the distribution M. Elements generated by A are
anomalies, while elements generated by M are not.

For each element z; we determine whether it is not an
anomaly and should remain in M;; or is an anomaly
and should be moved to A¢y;.

In order to make this determination, we examine the
likelihood of the two cases.

The likelihood, L, of the distribution D at time ¢ is:

L;(D) = HPD(@) =

((1 — NPT PMt(xi))

T, EM; T;EA,

AU Pace) | 4

For computational reasons, we compute the log likeli-
hood (L L) at time ¢:

LL(D) = [M;|log(1 = X\)+ > log(Pa, (i)

+|Allog A + > log(Pa,(z;)) (5)
T;EA,

In order to determine which elements are anomalies,
we use a general principle for determining outliers in
multivariate data (Barnett, 1979).

We measure how likely each element z; is an outlier
by comparing the difference change in the log likeli-
hood of the distribution if the element is removed from
the majority distribution M;_; and included with the
anomalous distribution A;_;. In other words, we ex-
amine the change in LL; if:

My = My_a\ {ae} (6)
At = At—l U {l‘t} (7)

If this difference (LL; — LL;_;) is greater than some
value ¢, we declare the element an anomaly and per-
manently move the element from the majority set to
the anomaly set. Otherwise, the element remains in
the normal distribution.

Mt = Mt—l (8)
At == At—l (9)

We repeat this process for every element and in the
end we get a partition of data set into a set of majority
elements and a set of anomalous elements.

Note that we have to use the machine learning method
to recompute the probability distributions Py, and
Py, using Laq and L4 at every step because of the
change in the sets M; and A;.

This test is an invocation of the Neyman-Pearson
Lemma, choosing the most likely hypothesis. If ¢ = 0
then this test performs strictly a maximum likelihood
test choosing the most likely case of whether or not
an element is an anomaly. If the difference is greater
than ¢ then according to the test it is more likely the
element is an anomaly.

The two parameters in this test, ¢ and A, can be set to
optimize performance of this method on a given prob-
lem. The choices are influenced by intuition about the
actual anomaly rate and the sensitivity of the problem
to misclassified anomalies. The parameter ¢ affects
the number of anomalies that are detected by the sys-
tem. With very low values of ¢ only the most extreme
anomalies are detected while with higher values of ¢
more elements are declared anomalies.

4. Anomaly Detection Applied to
Intrusion Detection

We applied the anomaly detection framework to detect
intrusions based on the analysis of process system calls.
We examined two sets of system call data containing
intrusions.

The data analyzed is a set of system call traces for
a given program. A trace is the history (or list) of
system calls made by a process of the given program
from beginning of execution to the termination of the
process. The arguments to the system calls are ignored
for the analysis. In both of these sets, there was a set
of clean traces and a set of intrusion traces.

Typical attacks that we examine were exploits targeted
at certain programs on UNIX machines. The programs
under attack all run as superuser which allow for a
“user to root” attack. This attack allows an unprivi-
leged user to obtain root user privileges. Fach of these
attacks exploits bugs in the programs which allow for
the change in user privileges. The underlying premise
is that the sequences of system calls during an intru-
sion are noticeably different from normal sequences of
system calls.

The first set of data is from the BSM (Basic Security
Module) data portion of the 1999 DARPA Intrusion
Detection Evaluation data created by MIT Lincoln
Labs (1999). The data consists of 5 weeks of BSM data
of all processes run on a Solaris machine. We examined
three weeks of traces of the programs which were at-
tacked during that time. The programs attacked were:
eject, ps, and fip.

The second set of data was obtained from Stephanie
Forrest’s group at the University of New Mexico. This
data set is described in detail in Warrender et al.
(1999). This data contains up to 15 months of nor-
mal traces for certain programs as well as intrusion
traces. The data provides normal and intrusion traces
of system calls for several processes. We examine the
data for the processes that were attacked with a “user
to root” attack. The processes examined correspond
to the programs: named, zlock, login, and ps.

Since our method assumes that the number of in-
trusions is small compared to the size of the normal
data, we only compare our method to the traditional
methods for anomaly detection over traces of programs
where the intrusions compose less that 5% of the total
number of system calls. Later we show the perfor-
mance of our method over traces of programs which
contain a higher percentage of intrusion traces. Tables
1 and 2 summarize the data sets and list the number
of system calls and traces for each program.

4.1 Detecting Anomalies in Sequences of
System Calls

We assumed that when anomalies occur, they are ran-
dom. Thus we set £4 to be a function that always re-
turns a uniform distribution over all sequences which
represents the anomaly distribution Py, for all {. We
used a fixed order Markov chain probability modeling
method (Lyy,) over the current set of normal elements
to build the probability model Pys,. Any probabil-
ity model can be applied to this problem such as naive
Bayes, models estimated using maximum entropy, hid-
den Markov models, variable order Markov chains,
ete.!

Our probability model is computed by examining what
the next symbol is following a sequence of a given
length L by counting the number of times that symbol
followed the sequence in the training data. Thus we
compute:

P(X¢|Xe—1, Xi—oy .0y Xio1) (10)

In order to avoid probabilities of 0, we use a pseudo
count predictor and add an initial value to each count.
For all of our experiments we used L = 3. In principal,
L can be set optimally to best estimate the probability
distribution.

In this application, each element is a single system call
in a process trace. The probability distribution for the
element is conditioned on the the previous L system
calls in the process trace.

Initially we computed the model over all elements,
My = D. Then for each element we computed the
difference in log likelihoods (see Equation 5) to deter-
mine whether or not the element is an anomaly.

We repeat this process for every element and in the end
we have partition of the data set into a set of majority
elements and a set of anomalous elements.

Note that in principal we have to retrain our learning
algorithm at every step to compute the log likelihood.
This can be done efficiently because only the elements
with the same preceding sequence need to be recom-
puted. In addition, the difference in log likelihoods
between the two distributions was computed directly.
Essentially, detection of intrusions took only 2 passes
through the data. The first pass was to train the prob-
ability distributions assuming that every element was
normal. The second pass computed the change in log
likelihood of the distribution if a given element was de-
clared an anomaly. Since the change in log likelihood

'In fact we obtained slightly better results using Sparse
Markov transducers but omitted them from the paper due
to space considerations (Eskin et al., 2000).

Table 1. Lincoln Labs Data Summary

Program || # Intrusion | # Intrusion | # Normal # Normal % Intrusion
Name Traces System Calls Traces System Calls Traces
ftpd 1 350 943 66842 0.05%

ps (LL) 21 996 208 35092 2.7%
eject 6 726 7 1278 36.3%

Table 2. University of New Mexico Data Summary

Program # Intrusion | # Intrusion | # Normal # Normal % Intrusion
Name Traces System Calls Traces System Calls Traces
xlock 2 949 72 16,937,816 0.006%

named 2 1,800 27 9,230,572 0.01%
login 9 4,875 12 8,894 35.4%
ps (UNM) 26 4,505 24 6,144 42.3%

was computed efficiently, the actual computation took
only seconds to perform on each data set.

4.2 Baseline Comparison Methods: stide and
t-stide

We compare our method against two methods, stide
and t-stide, shown to be effective in detecting intru-
sions in system call data when trained over clean data
in experiments performed on the University of New
Mexico data set (Warrender et al., 1999).

The sequence time-delay embedding (stide) algorithm
keeps track of what sequences were seen in the training
data and detects sequences not seen in training. The
method builds a model of normal data by making a
pass through the training data and storing each unique
contiguous sequence of a predetermined length in an
efficient manner. We used a length of six because that
is the length of the sequences used in the published
results of the method.

When the method is used to detect intrusions, the
sequences from the test set are compared to the se-
quences in the model. If a sequence is not found in
the normal model, it is called a mismatch or anomaly.

The threshold sequence time-delay embedding (t-
stide) algorithm is an extension of the stide algorithm
which incorporates a threshold. In addition to un-
known sequences, rare sequences are also counted as
mismatches. In this method, any sequence accounting
for less than 0.001% of the total number of sequences
is considered rare.

To detect intrusions, these methods compare the num-
ber of mismatches in a local region of 20 consecutive
sequences. A threshold is set for these local regions be-
tween 1 and 20. If the number of mismatches reaches

or exceeds the local mismatch threshold, the process
is declared an intrusion.

4.3 Experimental Results

We compare the performance of the method presented
in this paper with the baseline methods described
above. We first empirically show that the method pre-
sented in this paper out performs the baseline meth-
ods when trained over noisy data. Then we empirically
show that the performance of this method trained over
noisy data performs comparably to the baseline meth-
ods trained over clean data.

If a process trace contains an anomaly, we declare that
process an intrusion. We consider an intrusion de-
tected if either the intrusion process is detected, or one
of the processes spawned by the intrusion is detected.

We compare the anomaly detection methods in both
sets of experiments using ROC curves which graph the
false positive rate versus the detection rate (Provost
et al., 1998). The detection rate is the percentage of
intrusions which are detected. In order to be consis-
tent with previous published results on these data sets,
the false positive rate is defined to be the percentage
of normal system calls which are declared anomalous
(Warrender et al., 1999). The parameter settings of
the methods are varied to obtain multiple points on
the ROC curve. The ROC curves have few points be-
cause of the small amount of intrusion traces in each
data set.

The performance over noisy data were evaluated as
follows. We combined the intrusion data and the nor-
mal data into a single unlabeled data set and applied
our method to detect anomalies. For stide and t-stide,
we used the entire data set as both the training set
and test set. The stide method, does not detect any

1 T
AD ——
t-stides --->¢---
0.8
Q
T
x
c
S 06r
3]
Q
@
a
_E 04 -
(%]
2
£
0.2 -
0
0 0.0002 0.0004 0.0006 0.0008 0.001
(a) False Positive Rate
1 T
AD ——
t-stides --->¢---
0.8
Q
T
x
c
S 06
]
@ ¥
a
§ 04
(%]
2
£
0.2
0
0 0.0002 0.0004 0.0006 0.0008 0.001
(C) False Positive Rate

AD ——
t-stides --->¢---
0.8
Q
T
o
c
S 06f
3]
Q
@
a)
_5 04 -
(%]
2
IS
0.2
0
0 0.0002 0.0004 0.0006 0.0008 0.001
(b) False Positive Rate
‘AD ——
t-stides --->¢---
Q
T
o
c
8
°
Q
@
a)
c
2
(%]
2
IS
0.0002 0.0004 0.0006 0.0008 0.001

d) False Positive Rate

Figure 1. ROC curves showing a comparison with t-stide over noisy data. The method presented in the paper is labeled

AD in each graph. The curves are shown for all programs where the amount of intrusion system calls compose less that

5% of the data: (a) ftpd, (b) ps, (¢) xlock, and (d) named.

anomalies because every sequence is seen in the train-
ing. Thus, no “mismatches” occur. Since the “rare”
threshold for the t-stide method is fixed a priori and
determined by the total number of system calls in the
data set, there is no guarantee that any “rare” se-
quences will appear in he data. In the case of the
ftp and ps (LL) programs, no sequence was below the
threshold thus no anomalies were detected. A compar-
ison of the performance of the t-stide method and our
method for each data set is shown in Figures 1(a)-(d).

We also compare the performance of our method over
noisy data to traditional methods over clean data. The
stide and t-stide methods are trained on 1/3 of the
clean data and the test set is the remaining data. Fig-
ures 2(a)—(d) show the performance comparisons.

5. Analysis

The anomaly detection method presented in this paper
makes three important assumptions. The first assump-
tion is that the normal data can effectively be modeled
using the probability distribution. The second is that
the anomalous elements are sufficiently different from
the normal elements in order to be detected. The third
is that the number of anomalies is small compared to

the number of number of normal elements.

In the case of intrusion data, both the first two as-
sumptions hold. System calls for the normal processes
are very regular and can be modeled effectively. The
intrusion traces are significantly different from the nor-
mal traces because the intrusions exploit bugs in the
program to obtain a root shell. Since this never hap-
pens in normal processes, the system call traces are
significantly different.

The third assumption is required so that the anoma-
lies can be observed against the background of normal
data. If there are too many anomalies, the model of
the normal distribution will be significantly distorted
by the anomalies that the anomalies are difficult to de-
tect. We verify this empirically by showing the results
of the method when applied to data sets which have
a high proportion of intrusion system calls. In these
data sets, the method does not perform as well. We
compare the ROC curves in Figure 3 to demonstrate
that the the method performs better when there are
relatively few intrusions. As expected on the data sets
of the programs which have few intrusions (fipd, ps
(LL), wlock, named) the method perform better than
on the data sets which have a high proportion of intru-
sions (login, ps (UNM)). The system performs well on

1 — T T K
7 AD ——
t-stide --->---
stide ¥
0.8 4
Q
T
x -
=
S 06r p
3]
Q
@
a
5 04t i
(%]
2
= I
o2+ T]
0 %= . .
0 0.0002 0.0004 0.0006 0.0008 0.001
(a) False Positive Rate
1 % ,
i AD —+—
i t-stide -
i stide ¥
0.8 flf i
) H
T
o i
< i
S 06 i 4
o H
2
(7] 1
a i
§ 04]
(%] H
2
£
0.2 4
0
0 0.0002 0.0004 0.0006 0.0008 0.001
(C) False Positive Rate

AD ——
t-stide --->---
stide ¥
Q
T
o
c
£ X
3]
Q
@
a)
5 E)
s 04rl T e
(2}
s T
£
0.0002 0.0004 0.0006 0.0008 0.001
(b) False Positive Rate
1 poF T
i AD —+—
; t-stide --->¢---
stide ¥
0.8 | 4
Q
T
o
c
S 06 i
3]
Q
@
a)
§ 04 i
(2}
2
£
0.2 4
0
0 0.0002 0.0004 0.0006 0.0008 0.001
d) False Positive Rate

Figure 2. ROC curves showing the comparison of this method trained over noisy data and stide and t-stide trained over

clean data. The method presented in the paper is labeled AD in each graph. The curves are shown for all programs where

the amount of intrusion system calls compose less that 5% of the data: (a) ftpd, (b) ps, (c) xlock, and (d) named.

eject although there is a high proportion of intrusions
in the data. This may be because the eject program is
typically always used in the same way. This makes it
easier for the system to learn the normal pattern even
though there is little data and a significant amount of
noise.

o
o
I
8 o)
=
o 1
2 -
g .
o 4
°
8 .
2 -
£ -
T
-]
e
0 0.0002 0.0004 0.0006 0.0008 0.001

False Positive Rate

Figure 8. ROC curves illustrating the performance of the
method over data sets with different percentage of intrusion
traces.

6. Conclusion

We have presented a probabilistic approach for de-
tecting anomalies without a set of normal data. The
approach leverages the fact that the anomalies are
rare within data as compared to the number of nor-
mal elements. This is an improvement over tra-
ditional anomaly detection methods which required
clean training data. In many applications, clean data
is difficult to obtain and difficult to ensure that it con-
tains no anomalies.

We evaluated the anomaly detection approach by ap-
plying it to intrusion detection and compared it to
traditional methods for anomaly detection. However,
the framework presented for detecting anomalies can
be applied to a broader class of problems. For exam-
ple the technique can be used to detect errors in large
data sets.

Any probability modeling method could be used for
detection of anomalies. In addition over sequences of
system calls, different portions of the sequence (begin-
ning of a process versus the end of a process) can be
modeled separately to obtain more accurate models.
In this framework, more accurate probability estima-
tions may provide better results in intrusion detection.

Within intrusion detection, future work includes build-
ing truly adaptive anomaly detection systems which
detect anomalies using data obtained in live condi-
tions. Future work also includes using the probabilistic
framework to incorporate knowledge of known intru-
sions into an anomaly detection system.

References

Barnett, V. (1979). Some outlier tests for multivariate
samples. South African Statist, 13, 29-52.

Barnett, V., & Lewis, T. (1994). OQutliers in statistical
data. New York: John Wiley and Sons.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the
EM algorithm (with discussion). Journal of the
Royal Statistical Society B, 39, 1-38.

Denning, D. (1987). An intrusion detection model.
IEFEFE Transactions on Software Engineering, SE-13,
222-232.

Efron, B., & Tibshirani, R. (1993). An introduction to
the bootstrap. Boca Raton, FL: Chapman & Hall.

Eskin, E. (2000). Detecting errors within a corpus
using anomaly detection. Proceedings of First Con-
ference of the North American Association for Com-
putational Linguistics.

Eskin, E., Grundy, W. N., & Singer, Y. (2000). Protein
family classification using sparse Markov transduc-
ers. Proceedings of Fighth International Conference
on Intelligent Systems in Computational Biology.

Fawcett, T., & Provost, F. (1999). Activity monitor-
ing: Noticing interesting changes in behavior. Pro-
ceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining.

Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longstaff,
T. A. (1996). A sense of self for unix processes. Pro-
ceedings of the 1996 IEEE Symposium on Security
and Privacy (pp. 120-128). IEEE Computer Society.

Ghosh, A., & Schwartzbard, A. (1999). A study in
using neural networks for anomaly and misuse de-
tection. Proceedings of the Eighth USENIX Security
Symposium.

Helman, P., & Bhangoo, J. (1997). A statistically base
system for prioritizing information exploration un-
der uncertainty. IEEFE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Hu-
mans, 27, 449-466.

Hofmeyr, S. A., Forrest, S., & Somayaji, A. (1998). In-
trusion detect using sequences of system calls. Jour-
nal of Computer Security, 6, 151-180.

Javitz, H. S., & Valdes, A. (1993). The nides statistical
component: Description and justification (Technical
Report). SRI International.

Lane, T., & Brodley, C. E. (1997). Sequence match-
ing and learning in anomaly detection for computer
security. Proceedings of the AAAI-97 Workshop on
Al Approaches to Fraud Detection and Risk Man-
agement (pp. 43-49). Menlo Park, CA: AAAT Press.

Lane, T., & Brodley, C. E. (1998). Temporal sequence
learning and data reduction for anomaly detection.
In Proceedings of the Fifth ACM Conference on

Computer and Communications Security (pp. 150
158).

Lane, T., & Brodley, C. E. (1999). Temporal sequence
learning and data reduction for anomaly detection.
ACM Transactions on Information and System Se-

curity, 2, 295-331.
Lee, W., & Stolfo, S. J. (1998). Data mining ap-

proaches for intrusion detection. In Proceedings of
the Seventh USENIX Security Symposium.

Lee, W., Stolfo, S. J., & Chan, P. K. (1997). Learn-
ing patterns from unix processes execution traces for
intrusion detection. In Proceedings of the AAAI-97
Workshop on AI Approaches to Fraud Detection and
Risk Management (pp. 50-56). Menlo Park, CA:
AAAT Press.

McLachlan, G. J., & Krishnan, T. (1997). The EM
algorithm and extensions. New York: John Wiley
and Somns.

MIT Lincoln Labs (1999). 1999 DARPA intrusion
detection evaluation)

http://www.ll.mit.edu/IST/ideval /index.html.

Provost, F., Fawcett, T., & Kohavi, R. (1998). The
case against accuracy estimation for comparing in-
duction algorithms. Proceedings of the Fifteenth In-
ternational Conference on Machine Learning.

Warrender, C., Forrest, S., & Pearlmutter, B. (1999).
Detecting intrusions using system calls: alternative
data models. Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy (pp. 133-145). IEEE
Computer Society.

