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tTraditional anomaly dete
tion te
hniques fo-
us on dete
ting anomalies in new data aftertraining on normal (or 
lean) data. In thispaper we present a te
hnique for dete
tinganomalies without training on normal data.We present a method for dete
ting anoma-lies within a data set that 
ontains a largenumber of normal elements and relatively fewanomalies. We present a mixture model forexplaining the presen
e of anomalies in thedata. Motivated by the model, the approa
huses ma
hine learning te
hniques to estimatea probability distribution over the data andapplies a statisti
al test to dete
t the anoma-lies. The anomaly dete
tion te
hnique is ap-plied to intrusion dete
tion by examining in-trusions manifested as anomalies in UNIXsystem 
all tra
es.1. Introdu
tionAnomaly dete
tion is an important problem in in-trusion dete
tion (Denning, 1987). Intrusion dete
-tion is the problem of dete
ting atta
ks on systemsby examining various audit data of a system su
h asTCP pa
kets or system logs and di�erentiating be-tween normal users and intruders. Typi
al approa
hesto anomaly dete
tion methods require training over
lean data (normal data 
ontaining no anomalies) inorder to build a model that dete
ts anomalies. Thereare several inherent drawba
ks to this approa
h. The�rst is that 
lean data is not always easy to obtain.Se
ond, training over imperfe
t (noisy) data has seri-ous 
onsequen
es. If there is an intrusion hidden inthe training data, the anomaly dete
tion method willassume that it is normal and not dete
t subsequento

urren
es. We show empiri
ally that this is the 
aseby examining two traditional methods for anomaly de-te
tion (Warrender et al., 1999). Third, it is diÆ
ultto make these systems adaptive in the sense that they


an train \online" be
ause they need to train on datawhi
h must be guaranteed 
lean.This paper des
ribes a te
hnique for dete
ting anoma-lies without 
lean data. The method identi�es anoma-lies buried within the data set. This method makesthe assumption that the number of normal elementsin the data set is signi�
antly larger than the numberof anomalous elements. This te
hnique 
an be appliedto a broader 
lass of problems than intrusion dete
-tion. This te
hnique was applied to dete
ting taggingerrors in the Penn Treebank 
orpus (Eskin, 2000). Thete
hnique 
an also be applied to dete
ting anomaliesin a
tivity monitoring problems (Faw
ett & Provost,1999).We are interested in dete
ting anomalies inside a dataset for two main reasons. First, on
e we identify theanomalies, we 
an apply traditional anomaly dete
tionmethods using the 
lean data remaining. By removingthe anomalous elements whi
h may 
ontaminate themodel, we 
an 
reate better models of the normal data.Se
ond, the anomalies themselves 
an be of interest asthey may show rarely o

urring events.We present a framework for dete
tion of anomalies.The problem of anomaly dete
tion is inherently dif-�
ult be
ause even the nature of an anomaly as wellas why they o

ur in data is disputed. We present aformal mixture model explaining the presen
e of theanomalies. We then train a ma
hine learning methodover the data set to obtain a probability distributionover the data. Sin
e the number of anomalies is verysmall, we �rst assume that every element is normal.Motivated by our model of anomalies, we use the prob-ability distribution to test ea
h element to determinewhether or not it is an anomaly.For typi
al problems involving a mixture model, theproblem 
an be 
ast as in in
omplete data problem andestimated using the EM algorithm (Dempster et al.,1977). However, sin
e anomalies are extremely rarewith respe
t to the normal data, we 
an use the mu
hsimpler dire
t approa
h presented in this paper. Em-



piri
ally, we show that this approa
h suÆ
es for intru-sion dete
tion data obtained from live environments.In addition, be
ause the intrusion dete
tion appli
a-tion requires real time dete
tion of anomalies, the ap-proa
h presented in this paper is favorable be
ause it
an be 
omputed very eÆ
iently.We evaluate this method on intrusion dete
tion data.We examine tra
es of system 
alls in pro
esses in whi
hsome instan
es of the pro
esses are intrusions. We at-tempt to dete
t whi
h of the pro
esses are intrusionsand whi
h ones are normal pro
esses. We 
ompare themethod presented in this paper with two traditionalmethods of intrusion dete
tion, stide and t-stide, whi
hare shown to perform well on 
lean data (Warrenderet al., 1999). We show that our method performssigni�
antly better than the traditional methods overnoisy data. In addition, we show that our method per-forms 
omparably over noisy data to the performan
eof the traditional methods over 
lean data when thenumber of anomalies in the data is small 
ompared tothe number of normal elements.2. Related WorkAnomaly dete
tion is extensively used within the �eldof 
omputer se
urity spe
i�
ally in intrusion dete
tion(Denning, 1987).Many di�erent approa
hes to modeling normal andanomalous data have been applied to intrusion de-te
tion. A survey and 
omparison of anomaly dete
-tion te
hniques is given in (Warrender et al., 1999).Stephanie Forrest presents an approa
h for modelingnormal sequen
es using look ahead pairs (1996) and
ontiguous sequen
es (Hofmeyr et al., 1998). Helmanand Bhangoo (1997) present a statisti
al method todetermine sequen
es whi
h o

ur more frequently inintrusion data as opposed to normal data. Lee etal. (1997; 1998) uses a predi
tion model trained bya de
ision tree applied over the normal data. Ghoshand S
hwartzbard (1999) use neural networks to modelnormal data. Lane and Brodley (1997; 1998; 1999) ex-amined unlabeled data for anomaly dete
tion by look-ing at user pro�les and 
omparing the a
tivity duringan intrusion to the a
tivity under normal use.The work most similar to ours in intrusion dete
tionis a te
hnique developed at SRI in the Emerald sys-tem (Javitz & Valdes, 1993). Emerald uses histori
alre
ords as its normal training data. Emerald 
omparesdistributions of new instan
es to histori
al distribu-tions and di�eren
es between the distributions signalan intrusion. However, the problem with this approa
his that intrusions present in the histori
al distributions

may 
ause the system to not dete
t similar intrusionsin the new instan
es.The mixture model presented in this paper for explain-ing the presen
e of anomalies is typi
ally 
omputedusing the EM algorithm (Dempster et al., 1977). Asurvey of the literature on the EM algorithm is givenin M
La
hlan and Krishnan (1997). We use a boot-strap method to dete
t the anomalies. A survey ofthe bootstrap method is given in Efron and Tibshirani(1993).A related problem to anomaly dete
tion is the studyof outliers in the �eld of statisti
s. In statisti
s,te
hniques have been developed for dete
ting outliersin univariate data, multivariate data, and stru
tureddata using a given probability distribution. A surveyof outliers in statisti
s is given in Barnett and Lewis(1994).3. Anomaly Dete
tion3.1 Data Model for Explaining AnomaliesIn order to motivate a method for dete
ting anomalies,we must �rst make assumptions about how the anoma-lies o

ur in the data. We use a \mixture model"for explaining the anomalies, one of several popularmodels in statisti
s for explaining outliers (Barnett &Lewis, 1994). In the mixture model, ea
h element fallsinto one of two 
ases: with (small) probability �, theelement is an \anomalous" element and with probabil-ity (1 � �) the element is a \majority" element or anormal element.In intrusion dete
tion we are assuming that with prob-ability (1��) a given set of system 
alls is a legitimateuse of the system, while with probability � the set ofsystem 
alls 
orresponds to an intrusion.In this framework, there are two probability distribu-tions whi
h generate the data, a majority distributionand an anomalous distribution. An element xi is ei-ther generated from the majority distribution, M, orwith probability � from the alternate distribution, A.Our generative distribution for the data, D, is then:D = (1� �)M + �A (1)The mixture framework for explaining the presen
e ofanomalies in the data is independent of the propertiesor types of the distributions M and A.In intrusion dete
tion M is a stru
tured probabilitydistribution whi
h is estimated over the data using ama
hine learning te
hnique. The distribution A is amodel of the anomalous elements. Typi
ally this is a



uniform distribution be
ause a priori we do not knowwhi
h elements are anomalies or what they look like.The set of elementsD, generated by distribution,D, ispartitioned into two subsets, M and A, 
orrespondingto whi
h elements were generated by distribution Mand whi
h elements were generated by distribution A.We use the notation Mt (At) to denote the set of nor-mal (anomalous) elements after pro
essing element xt.Initially, we have not dete
ted any anomalies so the setof majority elements is the entire data set (M0 = D)and the set of anomaly elements is empty (A0 = ;).3.2 Modeling Probability DistributionsWe 
an use any ma
hine learning te
hnique to modelthe probability distributions. We assume that for thenormal elements we have a fun
tion LM whi
h takesas a parameter the set of normal elements Mt, andoutputs a probability distribution, PMt, over the dataD. Likewise, we have a fun
tion LA for the anoma-lous elements whi
h takes as a parameter the set ofanomalous elements At. In other words:PMt(X) = LM (Mt)(X) (2)PAt(X) = LA(At)(X) (3)These fun
tions LM and LA 
an be any probabilitymodeling method (i.e. Naive Bayes, Maximum En-tropy, et
.) Note that be
ause the set of anomalies isinitially empty, PA0(X) is the prior probability distri-bution be
ause there are no elements in the trainingset for the probability modeling method LA.3.3 Dete
tion of AnomaliesDete
ting anomalies, in this framework, is equivalentto determining whi
h elements were generated by thedistribution A and whi
h elements were generated bythe distribution M. Elements generated by A areanomalies, while elements generated by M are not.For ea
h element xt we determine whether it is not ananomaly and should remain in Mt+1 or is an anomalyand should be moved to At+1.In order to make this determination, we examine thelikelihood of the two 
ases.The likelihood, L, of the distribution D at time t is:Lt(D) = NYi=1PD(xi) = (1� �)jMtj Yxi2Mt PMt(xi)!0��jAtj Yxj2At PAt(xj)1A (4)

For 
omputational reasons, we 
ompute the log likeli-hood (LL) at time t:LLt(D) = jMtj log(1� �) + Xxi2Mt log(PMt(xi))+jAtj log� + Xxj2At log(PAt(xj)) (5)In order to determine whi
h elements are anomalies,we use a general prin
iple for determining outliers inmultivariate data (Barnett, 1979).We measure how likely ea
h element xi is an outlierby 
omparing the di�eren
e 
hange in the log likeli-hood of the distribution if the element is removed fromthe majority distribution Mt�1 and in
luded with theanomalous distribution At�1. In other words, we ex-amine the 
hange in LLt if:Mt = Mt�1 n fxtg (6)At = At�1 [ fxtg (7)If this di�eren
e (LLt � LLt�1) is greater than somevalue 
, we de
lare the element an anomaly and per-manently move the element from the majority set tothe anomaly set. Otherwise, the element remains inthe normal distribution.Mt =Mt�1 (8)At = At�1 (9)We repeat this pro
ess for every element and in theend we get a partition of data set into a set of majorityelements and a set of anomalous elements.Note that we have to use the ma
hine learning methodto re
ompute the probability distributions PMt andPAt using LM and LA at every step be
ause of the
hange in the sets Mt and At.This test is an invo
ation of the Neyman-PearsonLemma, 
hoosing the most likely hypothesis. If 
 = 0then this test performs stri
tly a maximum likelihoodtest 
hoosing the most likely 
ase of whether or notan element is an anomaly. If the di�eren
e is greaterthan 
 then a

ording to the test it is more likely theelement is an anomaly.The two parameters in this test, 
 and �, 
an be set tooptimize performan
e of this method on a given prob-lem. The 
hoi
es are in
uen
ed by intuition about thea
tual anomaly rate and the sensitivity of the problemto mis
lassi�ed anomalies. The parameter 
 a�e
tsthe number of anomalies that are dete
ted by the sys-tem. With very low values of 
 only the most extremeanomalies are dete
ted while with higher values of 
more elements are de
lared anomalies.



4. Anomaly Dete
tion Applied toIntrusion Dete
tionWe applied the anomaly dete
tion framework to dete
tintrusions based on the analysis of pro
ess system 
alls.We examined two sets of system 
all data 
ontainingintrusions.The data analyzed is a set of system 
all tra
es fora given program. A tra
e is the history (or list) ofsystem 
alls made by a pro
ess of the given programfrom beginning of exe
ution to the termination of thepro
ess. The arguments to the system 
alls are ignoredfor the analysis. In both of these sets, there was a setof 
lean tra
es and a set of intrusion tra
es.Typi
al atta
ks that we examine were exploits targetedat 
ertain programs on UNIX ma
hines. The programsunder atta
k all run as superuser whi
h allow for a\user to root" atta
k. This atta
k allows an unprivi-leged user to obtain root user privileges. Ea
h of theseatta
ks exploits bugs in the programs whi
h allow forthe 
hange in user privileges. The underlying premiseis that the sequen
es of system 
alls during an intru-sion are noti
eably di�erent from normal sequen
es ofsystem 
alls.The �rst set of data is from the BSM (Basi
 Se
urityModule) data portion of the 1999 DARPA IntrusionDete
tion Evaluation data 
reated by MIT Lin
olnLabs (1999). The data 
onsists of 5 weeks of BSM dataof all pro
esses run on a Solaris ma
hine. We examinedthree weeks of tra
es of the programs whi
h were at-ta
ked during that time. The programs atta
ked were:eje
t, ps, and ftp.The se
ond set of data was obtained from StephanieForrest's group at the University of New Mexi
o. Thisdata set is des
ribed in detail in Warrender et al.(1999). This data 
ontains up to 15 months of nor-mal tra
es for 
ertain programs as well as intrusiontra
es. The data provides normal and intrusion tra
esof system 
alls for several pro
esses. We examine thedata for the pro
esses that were atta
ked with a \userto root" atta
k. The pro
esses examined 
orrespondto the programs: named, xlo
k, login, and ps.Sin
e our method assumes that the number of in-trusions is small 
ompared to the size of the normaldata, we only 
ompare our method to the traditionalmethods for anomaly dete
tion over tra
es of programswhere the intrusions 
ompose less that 5% of the totalnumber of system 
alls. Later we show the perfor-man
e of our method over tra
es of programs whi
h
ontain a higher per
entage of intrusion tra
es. Tables1 and 2 summarize the data sets and list the numberof system 
alls and tra
es for ea
h program.

4.1 Dete
ting Anomalies in Sequen
es ofSystem CallsWe assumed that when anomalies o

ur, they are ran-dom. Thus we set LA to be a fun
tion that always re-turns a uniform distribution over all sequen
es whi
hrepresents the anomaly distribution PAt for all t. Weused a �xed order Markov 
hain probability modelingmethod (LMt) over the 
urrent set of normal elementsto build the probability model PMt. Any probabil-ity model 
an be applied to this problem su
h as naiveBayes, models estimated using maximumentropy, hid-den Markov models, variable order Markov 
hains,et
.1Our probabilitymodel is 
omputed by examining whatthe next symbol is following a sequen
e of a givenlength L by 
ounting the number of times that symbolfollowed the sequen
e in the training data. Thus we
ompute: P (XtjXt�1; Xt�2; ::; Xt�L) (10)In order to avoid probabilities of 0, we use a pseudo
ount predi
tor and add an initial value to ea
h 
ount.For all of our experiments we used L = 3. In prin
ipal,L 
an be set optimally to best estimate the probabilitydistribution.In this appli
ation, ea
h element is a single system 
allin a pro
ess tra
e. The probability distribution for theelement is 
onditioned on the the previous L system
alls in the pro
ess tra
e.Initially we 
omputed the model over all elements,M0 = D. Then for ea
h element we 
omputed thedi�eren
e in log likelihoods (see Equation 5) to deter-mine whether or not the element is an anomaly.We repeat this pro
ess for every element and in the endwe have partition of the data set into a set of majorityelements and a set of anomalous elements.Note that in prin
ipal we have to retrain our learningalgorithm at every step to 
ompute the log likelihood.This 
an be done eÆ
iently be
ause only the elementswith the same pre
eding sequen
e need to be re
om-puted. In addition, the di�eren
e in log likelihoodsbetween the two distributions was 
omputed dire
tly.Essentially, dete
tion of intrusions took only 2 passesthrough the data. The �rst pass was to train the prob-ability distributions assuming that every element wasnormal. The se
ond pass 
omputed the 
hange in loglikelihood of the distribution if a given element was de-
lared an anomaly. Sin
e the 
hange in log likelihood1In fa
t we obtained slightly better results using SparseMarkov transdu
ers but omitted them from the paper dueto spa
e 
onsiderations (Eskin et al., 2000).



Table 1. Lin
oln Labs Data SummaryProgram # Intrusion # Intrusion # Normal # Normal % IntrusionName Tra
es System Calls Tra
es System Calls Tra
esftpd 1 350 943 66842 0.05%ps (LL) 21 996 208 35092 2.7%eje
t 6 726 7 1278 36.3%Table 2. University of New Mexi
o Data SummaryProgram # Intrusion # Intrusion # Normal # Normal % IntrusionName Tra
es System Calls Tra
es System Calls Tra
esxlo
k 2 949 72 16,937,816 0.006%named 2 1,800 27 9,230,572 0.01%login 9 4,875 12 8,894 35.4%ps (UNM) 26 4,505 24 6,144 42.3%was 
omputed eÆ
iently, the a
tual 
omputation tookonly se
onds to perform on ea
h data set.4.2 Baseline Comparison Methods: stide andt-stideWe 
ompare our method against two methods, stideand t-stide, shown to be e�e
tive in dete
ting intru-sions in system 
all data when trained over 
lean datain experiments performed on the University of NewMexi
o data set (Warrender et al., 1999).The sequen
e time-delay embedding (stide) algorithmkeeps tra
k of what sequen
es were seen in the trainingdata and dete
ts sequen
es not seen in training. Themethod builds a model of normal data by making apass through the training data and storing ea
h unique
ontiguous sequen
e of a predetermined length in aneÆ
ient manner. We used a length of six be
ause thatis the length of the sequen
es used in the publishedresults of the method.When the method is used to dete
t intrusions, thesequen
es from the test set are 
ompared to the se-quen
es in the model. If a sequen
e is not found inthe normal model, it is 
alled a mismat
h or anomaly.The threshold sequen
e time-delay embedding (t-stide) algorithm is an extension of the stide algorithmwhi
h in
orporates a threshold. In addition to un-known sequen
es, rare sequen
es are also 
ounted asmismat
hes. In this method, any sequen
e a

ountingfor less than 0.001% of the total number of sequen
esis 
onsidered rare.To dete
t intrusions, these methods 
ompare the num-ber of mismat
hes in a lo
al region of 20 
onse
utivesequen
es. A threshold is set for these lo
al regions be-tween 1 and 20. If the number of mismat
hes rea
hes

or ex
eeds the lo
al mismat
h threshold, the pro
essis de
lared an intrusion.4.3 Experimental ResultsWe 
ompare the performan
e of the method presentedin this paper with the baseline methods des
ribedabove. We �rst empiri
ally show that the method pre-sented in this paper out performs the baseline meth-ods when trained over noisy data. Then we empiri
allyshow that the performan
e of this method trained overnoisy data performs 
omparably to the baseline meth-ods trained over 
lean data.If a pro
ess tra
e 
ontains an anomaly, we de
lare thatpro
ess an intrusion. We 
onsider an intrusion de-te
ted if either the intrusion pro
ess is dete
ted, or oneof the pro
esses spawned by the intrusion is dete
ted.We 
ompare the anomaly dete
tion methods in bothsets of experiments using ROC 
urves whi
h graph thefalse positive rate versus the dete
tion rate (Provostet al., 1998). The dete
tion rate is the per
entage ofintrusions whi
h are dete
ted. In order to be 
onsis-tent with previous published results on these data sets,the false positive rate is de�ned to be the per
entageof normal system 
alls whi
h are de
lared anomalous(Warrender et al., 1999). The parameter settings ofthe methods are varied to obtain multiple points onthe ROC 
urve. The ROC 
urves have few points be-
ause of the small amount of intrusion tra
es in ea
hdata set.The performan
e over noisy data were evaluated asfollows. We 
ombined the intrusion data and the nor-mal data into a single unlabeled data set and appliedour method to dete
t anomalies. For stide and t-stide,we used the entire data set as both the training setand test set. The stide method, does not dete
t any
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Figure 1. ROC 
urves showing a 
omparison with t-stide over noisy data. The method presented in the paper is labeledAD in ea
h graph. The 
urves are shown for all programs where the amount of intrusion system 
alls 
ompose less that5% of the data: (a) ftpd, (b) ps, (
) xlo
k, and (d) named.anomalies be
ause every sequen
e is seen in the train-ing. Thus, no \mismat
hes" o

ur. Sin
e the \rare"threshold for the t-stide method is �xed a priori anddetermined by the total number of system 
alls in thedata set, there is no guarantee that any \rare" se-quen
es will appear in he data. In the 
ase of theftp and ps (LL) programs, no sequen
e was below thethreshold thus no anomalies were dete
ted. A 
ompar-ison of the performan
e of the t-stide method and ourmethod for ea
h data set is shown in Figures 1(a){(d).We also 
ompare the performan
e of our method overnoisy data to traditional methods over 
lean data. Thestide and t-stide methods are trained on 1=3 of the
lean data and the test set is the remaining data. Fig-ures 2(a){(d) show the performan
e 
omparisons.5. AnalysisThe anomaly dete
tion method presented in this papermakes three important assumptions. The �rst assump-tion is that the normal data 
an e�e
tively be modeledusing the probability distribution. The se
ond is thatthe anomalous elements are suÆ
iently di�erent fromthe normal elements in order to be dete
ted. The thirdis that the number of anomalies is small 
ompared to
the number of number of normal elements.In the 
ase of intrusion data, both the �rst two as-sumptions hold. System 
alls for the normal pro
essesare very regular and 
an be modeled e�e
tively. Theintrusion tra
es are signi�
antly di�erent from the nor-mal tra
es be
ause the intrusions exploit bugs in theprogram to obtain a root shell. Sin
e this never hap-pens in normal pro
esses, the system 
all tra
es aresigni�
antly di�erent.The third assumption is required so that the anoma-lies 
an be observed against the ba
kground of normaldata. If there are too many anomalies, the model ofthe normal distribution will be signi�
antly distortedby the anomalies that the anomalies are diÆ
ult to de-te
t. We verify this empiri
ally by showing the resultsof the method when applied to data sets whi
h havea high proportion of intrusion system 
alls. In thesedata sets, the method does not perform as well. We
ompare the ROC 
urves in Figure 3 to demonstratethat the the method performs better when there arerelatively few intrusions. As expe
ted on the data setsof the programs whi
h have few intrusions (ftpd, ps(LL), xlo
k, named) the method perform better thanon the data sets whi
h have a high proportion of intru-sions (login, ps (UNM)). The system performs well on
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Figure 2. ROC 
urves showing the 
omparison of this method trained over noisy data and stide and t-stide trained over
lean data. The method presented in the paper is labeled AD in ea
h graph. The 
urves are shown for all programs wherethe amount of intrusion system 
alls 
ompose less that 5% of the data: (a) ftpd, (b) ps, (
) xlo
k, and (d) named.eje
t although there is a high proportion of intrusionsin the data. This may be be
ause the eje
t program istypi
ally always used in the same way. This makes iteasier for the system to learn the normal pattern eventhough there is little data and a signi�
ant amount ofnoise.
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es.

6. Con
lusionWe have presented a probabilisti
 approa
h for de-te
ting anomalies without a set of normal data. Theapproa
h leverages the fa
t that the anomalies arerare within data as 
ompared to the number of nor-mal elements. This is an improvement over tra-ditional anomaly dete
tion methods whi
h required
lean training data. In many appli
ations, 
lean datais diÆ
ult to obtain and diÆ
ult to ensure that it 
on-tains no anomalies.We evaluated the anomaly dete
tion approa
h by ap-plying it to intrusion dete
tion and 
ompared it totraditional methods for anomaly dete
tion. However,the framework presented for dete
ting anomalies 
anbe applied to a broader 
lass of problems. For exam-ple the te
hnique 
an be used to dete
t errors in largedata sets.Any probability modeling method 
ould be used fordete
tion of anomalies. In addition over sequen
es ofsystem 
alls, di�erent portions of the sequen
e (begin-ning of a pro
ess versus the end of a pro
ess) 
an bemodeled separately to obtain more a

urate models.In this framework, more a

urate probability estima-tions may provide better results in intrusion dete
tion.



Within intrusion dete
tion, future work in
ludes build-ing truly adaptive anomaly dete
tion systems whi
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t anomalies using data obtained in live 
ondi-tions. Future work also in
ludes using the probabilisti
framework to in
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