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Abstract.  In this paper, we present Anagram, a content anomaly detector that 
models a mixture of high-order n-grams (n > 1) designed to detect anomalous and 
“suspicious” network packet payloads. By using higher-order n-grams, Anagram 
can detect significant anomalous byte sequences and generate robust signatures of 
validated malicious packet content. The Anagram content models are implemented 
using highly efficient Bloom filters, reducing space requirements and enabling 
privacy-preserving cross-site correlation. The sensor models the distinct content 
flow of a network or host using a semi-supervised training regimen. Previously 
known exploits, extracted from the signatures of an IDS, are likewise modeled in a 
Bloom filter and are used during training as well as detection time. We demon-
strate that Anagram can identify anomalous traffic with high accuracy and low 
false positive rates. Anagram’s high-order n-gram analysis technique is also resil-
ient against simple mimicry attacks that blend exploits with “normal” appearing 
byte padding, such as the blended polymorphic attack recently demonstrated in [1]. 
We discuss randomized n-gram models, which further raises the bar and makes it 
more difficult for attackers to build precise packet structures to evade Anagram 
even if they know the distribution of the local site content flow. Finally, Ana-
gram’s speed and high detection rate makes it valuable not only as a standalone 
sensor, but also as a network anomaly flow classifier in an instrumented fault-
tolerant host-based environment; this enables significant cost amortization and the 
possibility of a “symbiotic” feedback loop that can improve accuracy and reduce 
false positive rates over time. 

1   Introduction 

The current generation of Network Intrusion Detection Systems (NIDS) are typically ill-
suited for stealthy worms and targeted attacks. Misuse and anomaly detectors that ana-
lyze packet headers and traffic flow statistics may be too slow to react to reliably detect 
worms that are designed to evade detection by shaping their behavior to look like legiti-
mate traffic patterns [2]. Furthermore, signature scanners are vulnerable to zero-day 
exploits [3] and polymorphic worms/stealthy attacks with obfuscated exploit code [4]. 
Consequently, there has been an increasing focus on payload analysis to detect the early 
onset of a worm or targeted attack. Ideally, one would hope to detect the very first pack-
ets of an attack, rather than accumulating sufficient statistics about connection flows to 
detect a zero-day attack.    

A number of researchers (e.g., [5-8]) have focused on payload-based anomaly detec-
tion. Approaches that have been studied include specification-based anomaly detection 
[7] as well as techniques that aim to detect “code-like” byte sequences in network pay-
loads [6, 9]. In our work, we have focused on automated statistical learning approaches 
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to efficiently train content models on a site’s “normal” traffic flow without requiring 
significant semantic analysis. Ideally, we seek to design a sensor that automatically 
learns the characteristics of “normal” attack-free data for any application, service, net-
work or host. Consequently, a model learned for “normal” attack-free data may be used 
to identify “abnormal” or suspicious traffic that would be subjected to further analysis to 
validate whether the data embodies a new attack.  

 In our previous work we proposed PAYL (short for “PAYLoad anomaly detection”) 
that modeled the “normal” attack-free traffic of a network site as 1-gram, byte-value 
frequency distributions [10], and demonstrated an ability to effectively detect worm 
behavior via ingress/egress and cross-site correlation [11]. The sensor was designed to 
be language-independent, requiring no syntactic analysis of the byte stream. Furthermore, 
PAYL was designed to be efficient and scalable for high-speed networks and applicable 
to any network service. Various experiments demonstrated that PAYL achieved a high 
detection rate and with low false positives for “typical” worms and exploits available at 
the time.  

However, most researchers2 correctly suspected that PAYL’s simplicity would be eas-
ily blinded by mimicry attacks. Kolesnikov, Dagon and Lee [1] demonstrated a new 
blended, polymorphic worm designed to evade detection by PAYL and other frequency 
distribution-based anomaly detectors. This demonstration represents a new class of 
“smart worms” that launch their attack by first sniffing traffic and shaping the datagram 
to the statistics specific to a given site to appear normal. The same principles may be 
applied to the propagation strategy as well as in, for example, parasitic worms.  Since 
PAYL only models 1-gram distributions, it can be easily evaded with proper padding to 
avoid detection of anomalous byte sequences. As a countermeasure, we conjecture that 
higher-order n-gram modeling may likely detect these anomalous byte sequences. Unfor-
tunately, computing a full frequency distribution for higher order n-grams is computa-
tionally and memory-wise infeasible, and would require a prohibitively long training 
period even for modest gram sizes.  

In this paper we present a new sensor, Anagram, which introduces the use of Bloom 
filters and a binary-based detection model. Anagram does not compute frequency distri-
butions of normal content flows; instead, it trains its model by storing all of the distinct 
n-grams observed during training in a Bloom filter without counting the occurrences of 
these n-grams. Anagram also stores n-grams extracted from known malicious packets in 
a second bad content Bloom filter, acquired by extracting n-grams from openly available 
worm detection rules, such as the latest Snort rulesets [12]. At detection time, packets 
are scored by the sensor on the basis of the number of unobserved n-grams the packet 
contains. The score is weighted by the number of malicious n-grams it contains as well. 
In this paper, we demonstrate that this semi-supervised strategy attains remarkably high 
detection and low false positive rates, in some cases 100% detection with less than 
0.006% false positive rate (per packet).  

The use of Bloom filters makes Anagram memory and computationally efficient and 
allows for the modeling of a mixture of different sizes of n-grams extracted from packet 
payloads, i.e. an Anagram model need not contain samples of a fixed size gram. This 
strategy is demonstrated to exceed PAYL in both detection and false positives rates. 
Furthermore, Anagram’s modeling technique is easier to train, and allows for the estima-
tion of when the sensor has been trained enough for deployment. The Bloom filter model 
representation also provides the added benefit of preserving the privacy of shared con-
tent models and alerts for cross-site correlation.  
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Of particular interest here is that Anagram is shown to be robust against existing mim-
icry attack approaches. We demonstrate Anagram’s ability to counter the simple mimicry 
attacks levied against PAYL. Furthermore, Anagram is designed to defeat training and 
mimicry attacks by using randomized n-gram modeling. The approach presented raises 
the bar against the enemy, making it far more difficult to design an n-gram attack against 
Anagram. By randomizing the portion of packets that Anagram extracts and models, 
mimicry attackers cannot easily guess how and where to pad malicious content to avoid 
detection. We also describe the use of a feedback loop between the Anagram sensor and 
host-based detectors, thereby updating Anagram models over time and improving its 
detection performance. Thus, the combination of model randomization and a feedback 
loop makes it more difficult to evade detection by training and mimicry attacks. The 
contributions of this paper include: 

• A new statistical, language-independent, efficient content-based anomaly detec-
tor based upon semi-supervised training of higher-order n-gram analysis that is 
shown to be resistant against existing mimicry attacks. The sensor does not rely 
upon a specification or semantic analysis of the target applications; 

• Robustness against future mimicry attacks by the use of a novel, low-overhead 
randomized testing strategy, making it difficult for the attacker to guess where 
or how to pad content; 

• Development of a run-time measure of the “stability” of a network’s content 
flow, providing a reasonable estimate of when the sensor has been well enough 
trained and is ready for deployment.  

• A robust means of representing content-based alerts for cross-site alert sharing 
and robust signature generation using a Bloom Filter representation of anoma-
lous byte sequences3;  

• A new defensive strategy showing how a symbiotic relationship between host-
based sensors and a content-based sensor can adapt over time to improve accu-
racy of modeling a site’s content flow. 

The rest of the paper is organized as follows.  Section 2 details the Anagram sensor 
and its relevant algorithms. Performance, detection rate, and false positive characteristics 
are presented testing Anagram against real network traffic traces infected with a collec-
tion of worms and viruses. Section 3 describes Anagram’s robustness against the clev-
erly crafted blended polymorphic worm reported in [1], previews the possibility of new 
customized mimicry attacks being crafted against Anagram, and describes randomization 
techniques for defeating such attacks. In section 4 we present the concept of coupling a 
“shadow server” with Anagram and discuss how the combination can effectively support 
the techniques presented in section 3, as well as support robust signature generation and 
patch generation. Section 5 discusses related work, while section 6 concludes the paper 
with a call for collaboration among researchers at distributed sites. 

2   Anagram – Modeling a Mixture of N-grams  

Anagram’s approach to network payload anomaly detection uses a mixture of higher 
order n-grams (n>1) to model and test network traffic content. N-gram analysis is a well-
known technique has been used in a variety of tasks, such as system call monitoring [15-
17]. In Anagram, the n-grams are generated by sliding windows of arbitrary lengths over 
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a stream of bytes, which can be per network packet, per request session, or other type of 
data unit.  

In our previous work on network payload anomaly detection, PAYL [10, 11], we 
modeled the length-conditioned 1-gram frequency distribution of packet payloads, and 
tested new packets by computing the Mahalanobis distance of the test packet against the 
model. This approach is effective at capturing attacks that display abnormal byte distri-
butions, but it is likely to miss well-crafted attacks that focus on simple CPU instructions 
and that are crafted to resemble normal byte distributions. For instance, although a stan-
dard CodeRed II’s buffer overflow exploit uses a large number of “N” or “X” characters 
and so appears as a peak in the frequency distribution, [18] shows that the buffer can 
instead be padded with nearly any random byte sequence without affecting the attack 
vector. Another example is the following simple phpBB forum attack:  

GET /modules/Forums/admin/admin_styles.php?phpbb_root_path=http
://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;wget%20216.15.209.4/cri
man;chmod%20744%20criman;./criman;echo%20YYY;echo|..HTTP/1.1.Ho
st:.128.59.16.26.User-Agent:.Mozilla/4.0.(compatible;.MSIE.6.0;
.Windows.NT.5.1;).. 

In such situations, the abnormal byte distribution model is insufficient by itself to 
identify these attack vectors as abnormal data. However, invariants remain in the packet 
payloads: the exploit code, the sequence of commands, or the special URL that should 
not appear in the normal content flow to the target application [19, 20]. By modeling 
higher order n-grams, Anagram captures the order dependence of byte sequences in the 
network payload, enabling it to capture more subtle attacks. The core hypothesis is that 
any new, zero-day exploit will contain a portion of data that has never before been deliv-
ered to the application. These subsequences of new, distinct byte values will manifest as 
anomalous” n-grams that Anagram is designed to efficiently and rapidly detect.4  

In the following sections we will give a detailed description of Anagram, which out-
performs PAYL in the following respects: 

• Accuracy in detecting anomalous payloads, even carefully crafted ‘mimicry at-
tacks’ with a demonstrably lower false positive rate; 

• Computational efficiency in detection by the use of fast (and incremental, linear-
time) hashing in its Bloom filter implementation; 

• Model space efficiency since PAYL's multiple-centroid modeling is no longer 
necessary, and Bloom filters are compact; 

• Fast correlation of multiple alerts while preserving privacy as collaborating sites 
exchange Bloom filter representations of common anomalous payloads; 

• The generation of robust signatures via cross-site correlation for early warning 
and detection of new zero day attacks. 

In the following sections, we will describe the mechanisms in detail and present ex-
perimental results of testing Anagram against network traces sniffed from our local LAN.  

2.1   High Order N-gram Payload Model 

While higher order n-grams contain more information about payloads, the feature space 
grows exponentially as n increases. Comparing an n-gram frequency distribution against 
a model is infeasible since the training data is simply too sparse; the length of a packet is 
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too small compared to the total feature space size of a higher-order n-gram. One TCP 

packet may contain only a thousand or so n-grams, while the feature space size is 256
n
. 

Clearly, with increasing n, generating sufficient frequency statistics to estimate the true 
empirical distribution accurately is simply not possible in a reasonable amount of time. 

In Anagram, we therefore do not model the frequency distribution of each n-gram. 
Rather, we observe each distinct n-gram seen in the training data and record each in a 
space efficient Bloom filter. Once the training phase terminates, each packet is scored by 
measuring the number of n-grams it did not observe in the training phase. Hence, a 
packet is scored by the following formula, where Nnew is the number of new n-grams not 

seen before and T is the total number of n-grams in the packet: Score = Nnew / T ∈ [0,1]. 
At first glance, the frequency-based n-gram distribution may contain more informa-

tion about packet content; one might suspect it would model data more accurately and 
perform better at detecting anomalous data, but since the training data is sparse, this 
alternative “binary-based model” performs significantly better than the frequency-based 
approach given the same amount of training data.  

We analyzed the network traffic for the Columbia Computer Science website and, as 
expected, a small portion of the n-grams appear frequently while there is a long “tail” of 
n-grams that appear very infrequently. This can be seen in Table 1, which displays the 
percentage of the n-grams by their frequency counts for 90 hours of CS web traffic. 
Since a significant number of n-grams have a small frequency count, and the number of 
n-grams in a packet is very small relative to the whole feature space, the frequency-
distribution model incurs relatively high false positives. Thus, the binary-based model 
(simply recording the distinct n-grams seen during training) provides a reasonable esti-
mate of how “normal” a packet may be. This is a rather surprising observation; as we 
will demonstrate, it works very well in practice.  The conjecture is that true attacks will 
be delivered in packets that contain many more n-grams not observed in training than 
“normal” packets used to train the model. After all, a true zero-day attack must deliver 
data to a server application that has never been processed by that application before. 
Hence, the data exercising the vulnerability is very likely to be an n-gram of some size 
never before observed. By modeling a mixture of n-grams, we increase the likelihood of 
observing these anomalous grams.  

To validate this conjecture, we compare the ROC curves of the frequency-based ap-
proach and the binary-based approach for the same datasets (representing equivalent 
training times) as displayed in figure 1. We collected the web traffic of two CS depart-
mental web servers, www and www1; the former serves the department webpage, while 
the latter serves personal web pages. Traffic was collected for two different time periods: 
a period of sniffed traffic from the year 2004 and another dataset sniffed in 2006. The 
2004 datasets5 (www-04 and www1-04) contain 160 hours of traffic; the 2006 datasets 
(www-06 and www1-06) contain about 560 hours. We tested for the detection of several 
real worms and viruses: CodeRed, CodeRed II, WebDAV, Mirela, a php forum attack, and a 
worm that exploits the IIS Windows media service, the nsiislog.dll buffer overflow vulner-
ability (MS03-022). These worm samples were collected from real traffic as they appeared in 
the wild, from both our own dataset and from a third-party. 

For the first experiment, we used 90 hours of www1-06 for training and 72 hours for 
testing. (Similar experiments on the other datasets display similar results, and we skip 
them here for brevity.) To make it easier for the reader to see the plots, the curves are 
plotted for the cases where the false positive rate is less than 0.03%. Both the detection 
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rate and false positive rate are calculated based on packets with payloads; non-payload 
(e.g., control) packets were ignored. Notice that the detection rate in figure 1 is based on 
per packet, instead of per attack. Some attacks have multiple packets; while fragmenta-
tion can result in a few packets appearing normal, we can still guarantee reliable attack 
detection over the entire set of packets. For example, for the IIS5 WebDAV attack, 5-
grams detect 24 out of 25 packets as being anomalous. The only missed packet is the 
first packet, which contains the buffer overflow string “SEARCH /AAA……AA”; this is 
not the key exploit part of the attack. For further comparison, we list minimum false 
positive rates when detecting all attack attempts (where an attack is detected if at least 
80% of the packets are classified as anomalous) for both binary-based and frequency-
based models in table 2. 

 

Table 2. The false positive rate (%) of the two approaches using different n-grams when achiev-
ing 100% detection rate, www1-06 train/test dataset 

 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 

Freq-based 30.40205 0.18559 0.08858 0.13427 0.30792 0.41477 

Binary-based 0.02109 0.01406 0.00634 0.00703 0.00914 0.00914 

 
The binary-based approach yields significantly better results than the frequency-based 

approach. When a 100% detection rate is achieved for the packet traces analyzed, the 
false positive rate of the binary-based approach is at least one order of magnitude less 
than the frequency-based approach. The relatively high false positive rate of the fre-
quency-based approach suggests much more training is needed to capture accurate statis-
tical information to be competitive. In addition, the extremely high false positive rate of 
the 3-gram frequency-based approach is due to the fact that the 3-grams of the php attack 
all appear frequently enough to make it hard to distinguish them from normal content 
packets. On the other hand, the binary-based approach used in Anagram results in far 
better performance. The 0.01% false positives average to about 1 alert per hour for 
www1 and about 0.6 alerts per hour for www. The result also shows that 5-grams and 6-
grams give the best result, and we’ve found this to be true for others as well.  

As previously stated, Anagram may easily model a mixture of different n-grams sim-
ply by storing these in the same Bloom filter. However, for larger n-grams additional 
training may be required; as we shall describe shortly, our modeling approach allows us 
to estimate when the sensor has been sufficiently trained.  
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Table 1. The percentage of the observed 
unique n-grams for different frequencies of 
occurrence for 90 hours of training traffic 

 

freq 
count 

3-grams 5-grams 7-grams 

>=5  58.05% 39.13% 32.53% 

2 to 4   22.17% 28.22% 28.48% 

1  19.78% 32.65% 38.99% 

 



 

2.2   Model Size and Bloom Filters 

As previously stated, one significant issue when modeling with higher order n-grams is 
memory overhead. By leveraging the binary-based approach, we can use more memory-
efficient set-based data structures to represent the set of observed n-grams. In particular, 
the Bloom filter (BF) [21] is a convenient tool to represent the binary model. Instead of 
using n bytes to represent the n-gram, or even 4 bytes for a 32-bit hash of the n-gram, the 
Bloom filter can represent a set entry with just a few bits, reducing memory requirements 
by an order of magnitude or more. 

A Bloom filter is essentially a bit array of m bits, where any individual bit i is set if 
the hash of an input value, mod m, is i. As with a hash table, a Bloom filter acts as a 

convenient one-way data structure that can contain many items, but generally is orders-
of-magnitude smaller. Operations on a Bloom filter are O(1), keeping computational 
overhead low. A Bloom filter contains no false negatives, but may contain false positives 
if collisions occur; the false positive rate can be optimized by changing the size of the bit 
array and by using multiple hash functions (and requiring all of them to be set for an 
item to be verified as present in the Bloom filter; in the rare case where one hash func-
tion collides between two elements, it’s highly unlikely a second or a third would also 
simultaneously collide). By using universal hash functions [22], we can minimize the 
probability of multiple collisions for n-grams in one packet (assuming each n-gram is 
statistically independent); the Bloom filter is therefore safe to use and does not nega-
tively affect detection accuracy.  

2.2.1   Memory overhead 
While Bloom filters are comparatively small even when inserting a large number of 

entries, choosing the optimal size of a Bloom filter is nontrivial, since Anagram is not 
aware of a site’s distribution (and the number of unique n-grams) before building its 
model. Additionally, a Bloom filter’s size cannot be dynamically resized, as the hash 
values cannot be recomputed without the original underlying training data.6 

A large Bloom filter will waste memory, but small Bloom filters saturate more 
quickly, yielding higher false positive rates. It is worth pointing out that “large” is rela-
tive; a 24-bit Bloom filter is capable of holding 2

24
/nh elements, where nh represents the 

number of hash functions used, in only 2MB of memory, e.g., each n-gram inserted uses 
about 2.7 bits when 3 hash functions are used. Additionally, we can use traditional com-
pression methods (e.g., LZW) for storing a sparse Bloom filter, which significantly re-
duces storage and transport costs. As discussed later in this paper, our experiments anec-
dotally suggest this Bloom filter is large enough for at least 5-grams, assuming a mostly 
textual distribution. 

The presence of binary data does significantly increase Bloom filter requirements; if 
allocating extra initial memory is undesirable, a “layered” approach can be employed, 
where new Bloom filters are created on demand as previous Bloom filters saturate, with 
a small constant-time overhead. It should be evident that Bloom filters can be trivially 
merged via bitwise ORing and compared via bitwise ANDing. 

2.3    Learning Issues 

The huge feature space of higher order n-grams makes estimating the frequency distribu-
tion infeasible. In the case of representing distinct n-grams, we pose the following ques-
tions: how long do we need to train before deploying the sensor in detection mode?  
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Further, how well can Anagram handle noisy training data since the model is binary-
based? 

2.3.1    When is the model well trained? 
Since there are many distinct n-grams, many of which may take days or weeks to see, 

when can we say the model is well trained and ready to use? We first check the likeli-
hood of seeing a new n-gram with additional training. Figure 2 shows the percentage of 
the new distinct n-grams out of every 10,000 content packets when we train for up to 500 
hours of traffic data. The key observation is that during the initial training period, one 
should expect to see many distinct n-grams. Over time, however, fewer distinct “never 
before seen” n-grams should be observed. Hence, for a given value of n, a particular site 
should exhibit some rate of observing “new” distinct n-grams within its “normal” con-
tent flow. By estimating this rate, we can estimate how well the Anagram model has been 
trained. When the likelihood of seeing new n-grams in normal traffic is stable and low, 
the model is stable; we can then use the rate to help detect the attacks, as they should 
contain a higher percentage of unseen n-grams. Figure 3 plots the false positive rates of 
different models, varying in n-gram size and length of training time, when tested on the 
72 hours of traffic immediately following the training data. 

From these plots, we can see that as the training time increases, the false positive rate 
generally goes down as the model is more complete. After some point, e.g. 4 days’ in 
figure 3, there is no further significant gain, and the FP rate is sufficiently low. Higher 
order n-grams need a longer training time to build a good model, so 7-grams display a 
worse result than 5-grams given the same amount of training. While the 3-gram model is 
likely more complete with the same amount of training, it scores significantly worse: 3-
gram false positives do not stem from inadequate training, but rather because 3-grams 
are not long enough to distinguish malicious byte sequences from normal ones.7  

 

0 50 100 150 200 250 300 350 400 450
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Per 10000 content packets

L
ik

e
lih

o
o
d
 o

f 
s
e
e

in
g
 n

e
w

 n
-g

ra
m

s 3-grams
5-grams
7-grams

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

Training Dataset Length (in days)F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) 
w

h
e
n
 1

0
0
%

 D
e
te

c
ti
o
n
 R

a
te

3-grams
5-grams
7-grams

 

                                                           
7 We hypothesize, though, that as the number of new 3-grams converges very rapidly, that the rate 

of detection of unique 3-grams during testing may be a good sign of an attack.  In general, 
anomalous content may be measurable as a function of the size of the gram detected that was 
not seen during training. 

Fig. 2. The likelihood of seeing new n-grams 
as training time increases. 

Fig. 3. False positive rate (with 100% detec-
tion rate) as training time increases. 

In theory, Anagram should always improve with further training – if we can guarantee 
a clean training dataset, which is crucial for the binary-based approach. However, ob-
taining clean training data is not an easy task in practice. During our experiments, in-



 

creased training eventually crosses a threshold where the false positive rate starts in-
creasing, even if the training traffic has been filtered for all known attacks. The binary-
based approach has significant advantages in speed and memory, but it’s not tolerant of 
noisy training, and manual cleanup is infeasible for large amounts of training data. We 
therefore introduce semi-supervised training in the next section to help Anagram be 
more robust against noisy data. 

2.3.2    Semi-supervised Learning 
The binary-based approach is simple and memory efficient, but too sensitive to noisy 

training data. One form of supervised training is quite simple. We utilize the signature 
content of Snort rules obtained from [12] and (a collection of about 500) virus samples 
to precompute a known “bad content model”. We build a bad content Bloom filter con-
taining the n-grams that appear in the two collections, using all possible n that we may 
eventually train on (e.g., n=2~9 in our experiments). This model can be incrementally 
updated when new signatures have been released.  

It’s important to note, however, that signatures and viruses often contain some normal 
n-grams, e.g., the ‘GET’ keyword for HTTP exploits. To remove these normal n-grams, 
we can maintain a small, known-clean dataset used to exclude normal traffic when gen-
erating the bad content BF. This helps to exclude, as a minimum, the most common 
normal n-grams from the bad content model. 

In one experiment, we used 24 hours of clean traffic to filter out normal n-grams from 
the bad content BF. Figure 4 shows the distribution of normal packets and attack packets 
that match against the bad content model. The X axis represents the “matching score”, 
the percentage of the n-grams of a packet that match the bad content model, while the Y 
axis shows the percentage of packets whose matching score falls within that score range. 
The difference between normal and attack packets is obvious; where the normal traffic 
barely matches any of the bad content model, attack packets have a much higher per-
centage, so that we can reliably apply the model for accurate detection. The resulting bad 
content BF contains approximately 46,000 Snort n-grams and 30 million virus n-grams 
(for n=2…9). 
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Fig. 4. Distribution of bad content scores for normal packets (left) and attack packets (right). 

The “bad content model” is used during both training and detection. During training, 
the incoming data stream is first filtered through Snort to ensure it is free of known, old 
attacks. Packets are then compared against the bad content model; any n-gram that 
matches the bad content model is dropped. The whole packet is also dropped if it 
matches too many n-grams from the bad content model – as new attacks often reuse old 
exploit code – to avoid modeling new malicious n-grams. In our experiment, we estab-
lished a 5% bad n-gram threshold before ignoring a training packet. While this is rather 



 

strict, ignoring a packet during training time is harmless as long as relatively few packets 
are dropped, as figure 4 shows.  

During detection, if a never-before-seen n-gram also appears in the bad content model, 
its detection score is further weighted by a factor t over other malicious n-grams; in our 
experiment, we set t to 5. This enables us to further separate malicious packets from 
normal ones in order to achieve higher detection accuracy. To show the improvement we 
gain by using the bad content model, figure 5 compares the false positive rate before and 
after using it for different n-gram sizes on two datasets. The false positive rates are sig-
nificantly reduced with the help of this bad content model.  
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Fig. 5. The false positive rate (with 100% detection rate) for different n-grams, under both nor-
mal and semi-supervised training. 

2.4   Signature Generation and Privacy-Preserving Cross-site Collaboration  

One other substantial advantage of Anagram is its ability to generate robust signatures. 
When a suspicious packet is detected, the corresponding malicious n-grams are identi-
fied in the packet for free. These n-grams are good target for further analysis and signa-
ture generation. It’s also particularly important to note that the order of the distinct 
anomalous n-grams is irrelevant, since it’s just a set of n-grams. An attempt to avoid 
detection by an attacker by reordering their attack vector code will therefore fail. 

Revisiting the php attack presented before, we show here the signatures generated by 
flattening out the detected malicious n-grams according to their positions, using 3-grams, 
5-grams and 7-grams, respectively. To present the nonprintable characters in the follow-
ing signatures, we use “.” as in tcpdump.  An asterisk (“*”) represents a “don’t-care” 
wildcard, similar to a Kleene star match in a regular expression.  

GET /modules/Forums/admin/admin_styles.phpadmin_styles.php?phpb
b_root_path=http://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;wget%20
216.15.209.4/criman;chmod%20744%20criman;./criman;echo%20YYY;ec
ho|..HTTP/1.1.Host:.128.59.16.26.User-Agent:.Mozilla/4.0.(compa
tible;.MSIE.6.0;.Windows.NT.5.1;).. 

N=3:  
*?ph*bb_*//8*p;wg*n;c*n;./c*n;ec*0YYY;echo|H*26.U*1;).* 

 

N=5: 
*ums/ad*in/admin_sty*.phpadmin_sty*hp?phpbb_root_path=http://81

.174.26.111/cmd*cmd=cd%20/tmp;wget%20216*09.4/criman;chmod%2074

4%20criman;./criman;echo%20YYY;echo|  HTT*6.26.Use*5.1;)..* 



 

N=7: 
*dules/Forums/admin/admin_styles.phpadmin_styles.php?phpbb_root

_path=http://81.174.26.111/cmd.gi*?&cmd=cd%20/tmp;wget%20216.15

.209.4/criman;chmod%20744%20criman;./criman;echo%20YYY;echo|  

HTTP/*59.16.26.User-*T 5.1;)..* 
 

All of these signatures are quite accurate: no normal packet matches more than 5% of 
the malicious n-gram signatures of the attack. Generally, low order n-grams produces 
less optimal signatures, since relatively few n-grams will be detected as malicious and 
they are not long enough to capture useful information. 7-grams produce the best signa-
ture; in theory, the longer the n-gram the better the generated signature, higher training 
and false positive costs notwithstanding.  

Besides the benefits of accurate signature generation, Anagram’s models enable 
cross-site privacy-preserving information sharing by using Bloom Filters. In our previ-
ous PAYL work [11], we discussed the idea of cross-site collaboration and its use for 
zero-day worm detection and signature generation, followed by several approaches for 
alert information sharing. However, PAYL’s correlation techniques traded accuracy for 
privacy.  

Instead, Anagram can share Bloom Filters with no loss of accuracy. Suspect payloads 
are identified by the sensor, and the particular anomalous n-grams (of any size) are 
stored in a Bloom Filter.8  The use of one-way hashes, combined with the large number 
of possible n-grams, makes reverse-engineering or brute forcing infeasible. By checking 
the n-grams of local alerts against the remote alert Bloom Filters, it’s easy to tell how 
similar the alerts are to each other, and identify the common malicious n-grams that can 
be used to construct a candidate attack signature.  

This is a substantial improvement over the previous approaches reported by several 
researchers whereby most common tokens, longest common substrings, and/or longest 
common subsequences are computed in order to identify common substrings between 
two or more suspect payloads. These computations intend to compute string signatures 
common across multiple instances of a polymorphic worm attack. Anagram essentially 
"pre-computes" common string subsequences via the common anomalous n-grams stored 
in the Bloom Filter, irrespective of the order of appearance of any of these anomalous 
strings, and thereby speeds up correlation.  

Due to a lack of space, we refer the reader to [23] for further details on the mechanics 
and effectiveness of our correlation approaches.  

3   Randomized Models to thwart Mimicry Attacks 

3.1    Anagram against Mimicry Attack 

As mentioned earlier, mimicry attacks are perhaps the most significant threat to any 
anomaly detector, such as [1], which details a polymorphic mimicry worm targeting 
PAYL. This smart worm learns a site’s normal traffic pattern by sniffing then blends the 
exploit packet with characters to simulate the normal byte frequency distribution to suc-
cessfully evade PAYL’s 1-gram models. Since this mimicry attack pads without consid-
ering the sequence of bytes, Anagram can easily detect any variants of the crafted at-
tacks9.   

                                                           
8 The number of anomalous n-grams must also be transmitted, as it is used in the threshold logic 

to identify anomalous packets. 
9 We are very grateful to Wenke Lee and his colleagues for providing the polymorph engine for 

use in our research.  



 

We adapted this worm to launch a mimicry attack against Anagram. Instead of pad-
ding the packet to simulate the byte frequency, we padded attack packets with normal 
strings; in this case, long URLs of the target website which should be, by definition, 
composed of normal n-grams. Although the anomaly scores are greatly reduced by this 
padding, the remaining portions of the crafted attack packets still have enough abnormal 
n-grams to be detected by Anagram. Besides the “sled”, which provides the opportunity 
for crafted padding, the attack packet still requires a byte sequence for the polymorphic 
decryptor, the encrypted exploit, encoded attacks, and the embedded mapping table. 
Since the amount of space in each packet is limited, the mimicked worm content contain-
ing the exploit vector is purposely spread over a long series of fragmented packets. Thus, 
the worm is fragmented so that each packet on its own does not appear suspicious.  This 
strategy is described in the aforementioned paper and is akin to a multi-partite attack 
strategy where the protocol processor assembles all of the distributed pieces necessary 
for the complete attack.  

Using the blended polymorph worm engine, we generated different variants of the 
worm. The following table shows the maximum padding length of each version. Each 
cell in the top row contains a tuple (x, y), representing a variant sequence of y packets of 
x bytes each. The second row represents the maximum number of bytes that can be used 
for padding in each packet. It’s obvious that there is a substantial chunk of packet that 
needs to be reserved for the exploit, where we conjecture malicious higher order n-grams 
will appear to encode the encrypted exploit code or the decryptor code.  

 
Table 3. The padding length for a packet of different varieties of the mimicry attack 

Version 418, 10 418, 100 730, 10 730, 100 1460, 10 1460, 100 

Padding length 125 149 437 461 1167 1191 

 
We tested Anagram over these modified mimicry attacks where the padding contained 

normal, non-malicious n-grams, and all of the attacks were successfully detected. This is 
the case since the crafted attack packets still require at least 15%-20% of the n-grams for 
code, which were detected as malicious. The false positive rates grows, however, as the 
packet length gets longer. The worst case for the (1460, 100) experiment yields a false 
positive rate around 0.1%. The semi-supervised learning strategy employed in Anagram 
using a model of “malicious n-grams” doesn’t help here since this mimicry worm uses 
encryption and data encoding to obfuscate its content. We also tested Anagram against 
polymorphic worms generated by the CLET engine [24]. However, since CLET encrypts 
the content and is not designed to mimic high order n-grams, it’s very easy for Anagram 
to detect them.10 

This experiment demonstrates that Anagram raises the bar for attackers making mim-
icry attacks harder since now the attackers have the task of carefully crafting the entire 
packet to exhibit a normal content distribution. Further effort is required by mimicry 
attacks to encode the attack vectors or code in a proper way that appears as normal high 
order n-grams. Without knowing exactly which value of n, the size of the modeled grams, 
they should plan for, the problem becomes even harder. We take this uncertainty and 
extend it in the next section for a more thorough strategy to thwart mimicry attacks.   

                                                           
10 We invite the security community to work with us in continuing the development and detection 

of mimicry attack-enabled worms. 



 

3.2    Randomization 

The general idea of payload-based mimicry attack is simply to evade detection by craft-
ing small pieces of exploit code with a large amount of “normal” padding data to make 
the whole packet look normal. But as we’ve seen in the example above, no matter what 
techniques are used for padding, there has to be some non-padded “exposed” sections of 
data to decode the exploit of the target vulnerability. The attacker has to determine 
where to pad with normal data, and where to hide the exploit code. Without knowing 
exactly what portions of the packet are tested by the detector, the task is complicated, 
and possibly reduced to guessing, even if the attacker knew what padding would be 
considered normal.  

We performed experiments using randomized modeling for PAYL, where we com-
puted multiple models based on different secret partitions of the data stream. Although 
the strategy successfully thwarted mimicry attack, it substantially increased the overhead 
of the sensor. A future report will detail those experiments. 

Here, we propose an alternative general strategy to thwart mimicry attacks via Ran-

domized Testing that does not incur any substantial overhead. Instead of testing and 
scoring the whole packet payload, we randomly partition packets into several (possibly 
interleaved) substrings or subsequences S1,S2,…,SN, and test each of them separately 
against the same single normal BF model and the single bad content model. Since the 
partition is randomly chosen by each sensor instance and kept secret, we assume the 
attackers cannot gain this information before they compromise the machine. The attack-
ers could only succeed if they can craft an attack vector ensuring that the data is normal 
with respect to any randomly selected portion of a packet; this makes the attacker’s tasks 
much harder than before. This technique can be generally applied to any content anom-
aly detector.  

To demonstrate the effectiveness of this counter-evasion tactic, we developed a sim-
ple randomization framework for Anagram. We generate a random binary mask with 
some length l (say, 100 bytes), and repeatedly apply this mask to the contents of each 
packet to generate test partitions. The mask corresponds to subsequences of contiguous 
bytes in the packet tested against the model; each is scored separately. The sequence of 
bytes appearing at locations where the mask had bits set to 1 are tested separately from 
those byte sequences where the mask had zero bits, randomly separating it into two non-
overlapping parts.  The packet anomaly score is adapted from section 2.1 to maximize 

the score over all partitions, i.e. ( )ii TNScore
new

/max= , where 
newiN  and Ti are the 

number of new and total n-grams in partition i, respectively. This can easily be extended 
to overlapping regions of the packet, and more than just two randomly chosen portions.  

There are several issues to consider. First, we want to optimize binary mask genera-
tion. While the mask can be a purely random binary string, we may then lose information 
about sequences of bytes. Since Anagram models n-grams, it’s not surprising that this 
strategy performs poorly. Instead, we randomize the mask using a “chunked” strategy, i.e. 
any string of contiguous 0’s or 1’s in the mask must be at least X bits long (correspond-
ing to X contiguous bytes in a partition), enabling us to preserve most of the n-gram 
information for testing. In our experiments, empirical testing yielded 10 bits as a good 
candidate size; automatically determining the optimal value is an interesting open ques-
tion for future research.  

Another observation is that the length of the randomly chosen partitions is best bal-
anced, i.e. a similar number of 1’s and 0’s. Such balancing avoids the extreme cases of 
too short payload snippets which lack sufficient statistical information. The false positive 
rate is usually much higher when the partitions have extremely unbalanced lengths; for 



 

example, a partition where one fragment is 10% of the total length and the other is 90% 
produces a poor false positive rate. 

For the results in figure 6, we use this “chunk-based binary mask strategy” and guar-
antee that one partition of the packet datagram is at most double the size of the other one. 
Again, we measure the false positive rate when we achieve 100% detection rate for our 
test traces. For each size n-gram, we repeated the experiment 10 times to show the aver-
age (the middle plot) and standard deviation (the vertical bars), both for the unsuper-
vised learning (left plot) and semi-supervised learning (right plot) using the malicious n-
gram content model. The experiment was performed on dataset www1-06, trained for 90 
hours and tested on the following 72 hours of traffic. 

On average, the randomized models produce comparable false positive rates to the 
non-randomized approach, especially when using semi-supervised learning. The lower 
order n-grams are more sensitive to partitioning, so they exhibit a high standard devia-
tion, while higher order n-gram models are relatively stable. Further research needs to be 
done to determine a good partitioning approach that can reduce the deviation while 
keeping the essential randomization strategy intact. We believe randomization is the 
correct direction, and a valuable step toward complicating the task for the mimicry at-
tacker. 

 

Fig. 6. The average false positive rate and standard deviation with 100% detection rate for ran-
domized testing, with normal training (left) and semi-supervised training (right). 

3.3   Threshold reduction and “extreme” padding 

In the experiments we reported above, we noticed that the randomized models’ false 
positive rates, while comparable on average, exhibit a higher variance than the case 
where models are not randomized. Consider an extreme mimicry attack: suppose an 
attacker crafts packets with only one instruction per packet, and pads the rest with nor-
mal data. If a 100% detection rate is desirable, lowering the score threshold to some 
minimum nonzero value ε might be the only way to achieve this goal. Unsurprisingly, 
this approach corresponds to a direct increase in the false positive rate, which may vary 
between 10% to 25% of all packets, depending on the n-gram sizes chosen and the 
amount of training of the model. 

Such a false positive rate may be viewed as impractical, rendering the sensor useless. 
We believe this is wrong. The false positive rate is not always the right metric – espe-
cially if Anagram is used in conjunction with other sensors. For example, Anagram may 
be used to shunt traffic to a host-based, heavily instrumented shadow server used as a 
detector; in other words, we do not generate Anagram alarms to drop traffic or otherwise 



 

mitigate against (possibly false) attacks, but rather we may validate whether traffic is 
indeed an attack by making use of a host-based sensor system.  If we can shunt, say 25% 
of the traffic for inspection by an (expensive) host-based system, while leaving the re-
maining normal traffic unabated to be processed by the operational servers, the proposed 
host-based shadow servers can amortize their overhead costs far more economically. 
Thus, the false positive rate is not as important as the true positive rate, and false posi-
tives do not cause harm. We describe this approach in greater detail in section 4. 

4   Adaptive Learning 

4.1   Training Attacks versus Mimicry Attacks 

We distinguish between training attacks and mimicry attacks: A mimicry attack is the 
willful attempt to craft and shape an attack vector to look normal with respect to a model 
computed by an anomaly detector. The attacker would need to know the modeling algo-
rithm used by the sensor and the normal data it was trained on. The polymorphic blended 
attack engine discussed in Section 3 assumes to know both by sniffing an environment’s 
normal data (an open question is whether the normal data of one site produces suffi-
ciently similar models to other sites that are targeted by a mimicry attack). Alternatively, 
a training attack is one whereby the attacker sends a stream of data incrementally or 
continuously distant from the normal data at a target site in order to influence the anom-
aly detector to model data consistent with the attack vector. Attack packets would appear 
normal since they were modeled. This type of attack would succeed if the attacker were 
lucky enough to send the stream of data while the anomaly detector was in training 
mode. Furthermore, the attacker would presume that the stream of “malicious training 
data” would go unnoticed by the sensor while it was training.   

We presented the concept of randomization in order to thwart mimicry attack. Even if 
the attacker knew the normal data distribution, the attacker would not know the actual 
model used by the sensor. However, we have not addressed training attacks. [25] ex-
plores this problem and suggests several theoretical defenses. For example, Anagram’s 
semi-supervised learning mechanism can help protect the model if learning attacks recy-
cle old exploit code. However, if the learning attack does not contain any known bad n-
grams, Anagram cannot detect it by itself. We conjecture that the coupling of the training 
sensor with an “oracle” that informs the sensor of whether or not the data it is modeling 
is truly normal can thwart such training attacks. For example, if the attacker sends pack-
ets that do not exploit a server vulnerability, but produces an error response, this should 
be noticed by the sensor in training mode; we discuss this further in the next section. 
Such feedback-based learning does not address all cases, e.g., a learning attack embed-
ded into a HTTP POST payload, which would generate a legitimate server response. 
Randomization may also be valuable for learning attacks; we leave the exploration of 
such defense mechanisms for future research. 

4.2   Feedback-based learning and filtering using instrumented shadow servers 

Host-based fault detection and patch generation techniques (such as Stack-
Guard/MemGuard [26], STEM [27], DYBOC [28], and many others) hold significant 
promise in improving worm and attack detection, but at the cost of significant computa-
tional overhead on the host. The performance hit on a server could render such tech-
nologies of limited operational value. For instance, STEM [27] imposes a 200% over-
head for an entirely-instrumented application. DYBOC [28] is more proactive and de-
signed to be deployed on production servers to provide faster response, but still imposes 



 

at least a 20% overhead on practical web servers. If one can find a means of reducing the 
cost of this overhead, the technology will have a far greater value to a larger market. 

We envision an architecture consisting of both production servers and an instru-
mented shadow server, with the latter executing both valid and malicious requests se-
curely but with significant overhead. A network anomaly flow classifier is placed in 
front of these pools and shunts traffic based on the anomaly content in incoming requests. 

In order for the flow classifier to be appropriate for this architecture, we need to en-
sure that no malicious requests are sent to the production pool, as those machines may be 
potentially vulnerable to zero-day attacks. It is acceptable if a small fraction of the traf-
fic deemed as false positives are shunted to the shadow server, because this server will 
indeed serve the requests, but with a greater latency. Nothing has been lost, but only 
some amount of response time for a minority portion of the traffic flow. In other words, 
an anomaly detector that wants to act as this classifier should have a 100% true positive 
detection rate and a reasonably low false positive rate. We can characterize the latency 

in such an architecture as l'= l × 1− fp( )( )+ l × os × fp( ), where l is the standard latency 

of a service, os is the shadow server overhead, and fp is the false positive rate. If we want 
to target a maximum latency increase l'−l of 1%, given a 20% overhead in using the 
shadow server, the false positive rate can be as high as approximately 10%. As we de-
scribed in section 3.3, we believe this order-of-magnitude is achievable, along with a 
100% detection rate, by setting the threshold to some low ε. This places network content 
flow anomaly detectors in a completely new light. Zero false positive rates are simply 
not the right objective. Furthermore, a symbiotic relationship may emerge over time.  
False positives validated by the shadow server serve as training data to improve the 
accuracy of the anomaly detector. In time, the false positive rate would be decrease and 
less traffic would be served by the shadow server; we discuss this in the next section. 

4.2.1   Adaptive model training of Anagram with shadow servers 
Anagram’s detection model assumes no noise in the model, and uses semi-supervised 

training (section 2.3.2) to ensure clean training traffic. This approach can be enhanced 
with a hybrid shadow server architecture: 

1. Use the shadow server as a training supervisor. This entails an initial passive Ana-
gram deployment, and a “slow training mechanism” whereby the shadow server is 
initially sent all requests, and only requests generating a normal response are then 
sent to Anagram for training. After a sufficient amount of training has been done, 
Anagram can then be put into an active deployment. 

2. Use a short training time, and use the shadow server as a false positive feedback 
mechanism. In this scenario, Anagram only trains on a small fraction of traffic as-
sumed to be good and is then immediately deployed. While the false positive rate 
will be higher, Anagram can watch for normal responses from the shadow server 
and can then include the appropriate n-grams of the original request in its model of 
“normal traffic”. This can incrementally reduce the false positive rate as the system 
continues processing requests. 

Of course, a hybrid approach can also be employed; for example, Anagram could be 
deployed with no model, process 100% as false positives, and use feedback as an incre-
mental learning architecture.  We performed some early experiments with feedback 
learning using the PAYL sensor in [29], and Anagram has recently been used as a sensor 
in [30]. We intend to continue integration experiments using Anagram, and will report 
our results in a future paper. 



 

5   Related Work 

In addition to the works cited in the introduction, we further discuss research in anomaly 
detection, signature generation, polymorphic worms, and mimicry and learning attacks. 

5.1   Anomaly Detectors and Signature Generators 

Early intrusion anomaly sensors focused system calls. Forrest [16]’s "foreign sequences 
of system calls" in a binary-based anomaly detector is quite similar to the modeling 
implemented in Anagram. Tan and Maxion [17] shows why Forrest's work produced 
optimal results when the size of the token window was fixed at 6 (essentially a 6-gram). 
In Anagram, no fixed sized window is needed; one may model a mixture of n-grams. 
Forrest’s grams were sequences of tokens each representing a unique system function, 
whereas Anagram models n-grams of byte values. 

Many researchers have considered the use of packet flows and/or content analysis for 
anomaly detection. Honeycomb [31] is a host-based IDS that automatically creates sig-
natures by applying longest common substring (LCS) on malicious traffic captured by a 
honeypot targeting dark space. Computed substrings are used as candidate worm signa-
tures. Similarly, EarlyBird [32] uses Rabin fingerprints to find the most frequent sub-
strings for signatures. Unlike Honeycomb (and PAYL), Anagram computes distinct n-
grams from packets and compares the n-gram set against those in its model; this is a 
linear-time operation, unlike polynomial-time LCS. 

Polygraph [19] extends the work done in Autograph [33]; both are signature genera-
tors that assume traffic is separated into two flow pools, one with suspicious scanning 
traffic and a one with non-suspicious traffic. Instead of assuming signatures are contigu-
ous, like Autograph, Polygraph allows a signature composed multiple noncontiguous 
substrings (tokens), particularly to accommodate polymorphic worms. Tokens may be 
generated as a set (of which all must be present), as an ordered sequence, or as a prob-
abilistic set (Bayes signature). Like Polygraph, Anagram is capable of identifying multi-
ple “tokens”. However, Anagram’s design also does not assume an external flow classi-
fier, being one itself. A more general discussion of related work in the area of anomaly 
detection can be found in [10]. 

Shield [34] provides vulnerability signatures instead of string-oriented content signa-
tures, and blocks attacks that exploit that vulnerability. A “shield” is manually specified 
for a vulnerability identified in some network available code; the time lag to specify, test 
and deploy shields from the moment the vulnerability is identified favors the worm 
writer, not the defenders. COVERS [35] analyzes attack-triggered memory errors in 
C/C++ programs and develops structural memory signatures; this is a primarily host-
specific approach, while Anagram focuses on network traffic. 

SigFree [9] uses a different approach, focusing on generic code detection; as its name 
implies, it does not rely on signatures, preferring to disassemble instruction sequences 
and identify, using data flow anomaly detection, if requests contain sufficient code to 
merit them as being suspicious. Anagram does not explicitly differentiate between code 
and data, although it is often able to do so based on training. Additionally, Anagram 
monitors content flows, not just requests, and can apply to a broader variety of protocols. 

5.2   Polymorphic Worms, Mimicry and Learning Attacks 

Early work on polymorphic worms focused on making it more difficult for COTS signa-
ture scanner detection; they can be easily detected by an anomaly detector as they con-
tain significantly different byte distributions than non-malicious code. Polymorphic 
worms with vulnerability-exploiting shellcode, e.g., ADMmutate [36] and CLET [24], 



 

do support exploit vectors and are primarily designed to fool signature-based IDSes. 
CLET does feature a form of padding, which they call cramming, to defeat simple 
anomaly detectors. However, cram bytes are derived from a static source, i.e. instruc-
tions in a file included with the CLET distribution; while this may be customized to 
approach a general mimicry attack, it must be done by hand. 

The notion of a mimicry attack on an anomaly detection system was first introduced 
in 2001 by Wagner and Dean [37], but initial efforts to generate mimicry attacks, includ-
ing [38] and [39], focused on system-call anomaly detection. With the advent of effec-
tive network payload-based anomaly detection techniques, researchers have begun build-
ing “smart worms” that employ a combination of polymorphism and mimicry attack 
mechanisms. Kolesnikov, Dagon and Lee [1] built a worm specifically designed to target 
network anomaly detection approaches, including PAYL.  They use a number of tech-
niques, including polymorphic decryption, normal traffic profiling and blending, and 
splitting to effectively defeat PAYL and several other IDSes. 

Defeating learning attacks is also current research; [25] discusses the problem for 
anomaly detectors from a theoretical perspective, categorizes different types of learning 
attacks (e.g., causative vs. exploratory, etc.) and speculates as to several possible solu-
tions. Anagram implements some of these techniques, and its use of randomization, 
hiding key parameters of the model secret from the attacker, may be extensible to learn-
ing. Our ongoing work includes exploring several other strategies, including the ran-
domization of n-gram sizes, and various strategies to test whether an attacker is polluting 
learning traffic at given points in time.  

6   Conclusion 

Anagram is an anomaly detector based upon n-gram analysis using a binary-based mod-
eling technique. The use of randomization makes the sensor resistant to mimicry attack. 
Anagram’s models use Bloom filters for compactness and performance. Our tests suggest 
Anagram has less than a .01% false positive rate along with a 100% detection rate for a 
variety of worms and viruses detected in traces of our local network traffic. Anagram’s 
use of Bloom filters also enables effective privacy-preserving cross-site correlation and 
signature generation. 

Anagram detects existing mimicry attacks, including those targeted at our previous 
anomaly detection sensor, PAYL, and we speculate that Anagram will be robust to future 
attacks as well. We also discuss approaches to effectively learn Anagram models, includ-
ing the use of a bad content Bloom filter and instrumented shadow servers. For the latter 
case, we believe Anagram can act as an effective network anomaly flow classifier to 
mitigate host instrumentation overhead and make these tools effective for practical de-
ployment. 

There are a number of interesting venues for future research. We intend to build an 
integrated instrumented shadow server architecture utilizing Anagram to collect statistics 
on performance and modeling accuracy. Another open area of research is to make bi-
nary-based modeling more robust against learning attacks. We would also like to com-
pare Anagram’s performance to other proposed content-based anomaly sensors.11  Fi-
nally, we intend a practical deployment of a multiple-site correlation effort and gauge 
Anagram’s performance in helping to identify broad zero-day worms or targeted attacks 
while maintaining full privacy. 

                                                           
11 At the time of writing this paper, no other sensors have been made available to us from other 

researchers. We would be delighted to collaborate with other research groups to perform these 
comparative evaluations.  
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