

Anagram: A Content Anomaly Detector Resistant to
Mimicry Attack1

Ke Wang Janak J. Parekh Salvatore J. Stolfo

Computer Science Department, Columbia University
500 West 120th Street, New York, NY, 10027

{kewang, janak, sal}@cs.columbia.edu

Abstract. In this paper, we present Anagram, a content anomaly detector that
models a mixture of high-order n-grams (n > 1) designed to detect anomalous and
“suspicious” network packet payloads. By using higher-order n-grams, Anagram
can detect significant anomalous byte sequences and generate robust signatures of
validated malicious packet content. The Anagram content models are implemented
using highly efficient Bloom filters, reducing space requirements and enabling
privacy-preserving cross-site correlation. The sensor models the distinct content
flow of a network or host using a semi-supervised training regimen. Previously
known exploits, extracted from the signatures of an IDS, are likewise modeled in a
Bloom filter and are used during training as well as detection time. We demon-
strate that Anagram can identify anomalous traffic with high accuracy and low
false positive rates. Anagram’s high-order n-gram analysis technique is also resil-
ient against simple mimicry attacks that blend exploits with “normal” appearing
byte padding, such as the blended polymorphic attack recently demonstrated in [1].
We discuss randomized n-gram models, which further raises the bar and makes it
more difficult for attackers to build precise packet structures to evade Anagram
even if they know the distribution of the local site content flow. Finally, Ana-
gram’s speed and high detection rate makes it valuable not only as a standalone
sensor, but also as a network anomaly flow classifier in an instrumented fault-
tolerant host-based environment; this enables significant cost amortization and the
possibility of a “symbiotic” feedback loop that can improve accuracy and reduce
false positive rates over time.

1 Introduction

The current generation of Network Intrusion Detection Systems (NIDS) are typically ill-
suited for stealthy worms and targeted attacks. Misuse and anomaly detectors that ana-
lyze packet headers and traffic flow statistics may be too slow to react to reliably detect
worms that are designed to evade detection by shaping their behavior to look like legiti-
mate traffic patterns [2]. Furthermore, signature scanners are vulnerable to zero-day
exploits [3] and polymorphic worms/stealthy attacks with obfuscated exploit code [4].
Consequently, there has been an increasing focus on payload analysis to detect the early
onset of a worm or targeted attack. Ideally, one would hope to detect the very first pack-
ets of an attack, rather than accumulating sufficient statistics about connection flows to
detect a zero-day attack.

A number of researchers (e.g., [5-8]) have focused on payload-based anomaly detec-
tion. Approaches that have been studied include specification-based anomaly detection
[7] as well as techniques that aim to detect “code-like” byte sequences in network pay-
loads [6, 9]. In our work, we have focused on automated statistical learning approaches

1 This work has been partially supported by a grant with the Army Research Office, No. DA

W911NF-04-1-0442.

to efficiently train content models on a site’s “normal” traffic flow without requiring
significant semantic analysis. Ideally, we seek to design a sensor that automatically
learns the characteristics of “normal” attack-free data for any application, service, net-
work or host. Consequently, a model learned for “normal” attack-free data may be used
to identify “abnormal” or suspicious traffic that would be subjected to further analysis to
validate whether the data embodies a new attack.

 In our previous work we proposed PAYL (short for “PAYLoad anomaly detection”)
that modeled the “normal” attack-free traffic of a network site as 1-gram, byte-value
frequency distributions [10], and demonstrated an ability to effectively detect worm
behavior via ingress/egress and cross-site correlation [11]. The sensor was designed to
be language-independent, requiring no syntactic analysis of the byte stream. Furthermore,
PAYL was designed to be efficient and scalable for high-speed networks and applicable
to any network service. Various experiments demonstrated that PAYL achieved a high
detection rate and with low false positives for “typical” worms and exploits available at
the time.

However, most researchers2 correctly suspected that PAYL’s simplicity would be eas-
ily blinded by mimicry attacks. Kolesnikov, Dagon and Lee [1] demonstrated a new
blended, polymorphic worm designed to evade detection by PAYL and other frequency
distribution-based anomaly detectors. This demonstration represents a new class of
“smart worms” that launch their attack by first sniffing traffic and shaping the datagram
to the statistics specific to a given site to appear normal. The same principles may be
applied to the propagation strategy as well as in, for example, parasitic worms. Since
PAYL only models 1-gram distributions, it can be easily evaded with proper padding to
avoid detection of anomalous byte sequences. As a countermeasure, we conjecture that
higher-order n-gram modeling may likely detect these anomalous byte sequences. Unfor-
tunately, computing a full frequency distribution for higher order n-grams is computa-
tionally and memory-wise infeasible, and would require a prohibitively long training
period even for modest gram sizes.

In this paper we present a new sensor, Anagram, which introduces the use of Bloom
filters and a binary-based detection model. Anagram does not compute frequency distri-
butions of normal content flows; instead, it trains its model by storing all of the distinct
n-grams observed during training in a Bloom filter without counting the occurrences of
these n-grams. Anagram also stores n-grams extracted from known malicious packets in
a second bad content Bloom filter, acquired by extracting n-grams from openly available
worm detection rules, such as the latest Snort rulesets [12]. At detection time, packets
are scored by the sensor on the basis of the number of unobserved n-grams the packet
contains. The score is weighted by the number of malicious n-grams it contains as well.
In this paper, we demonstrate that this semi-supervised strategy attains remarkably high
detection and low false positive rates, in some cases 100% detection with less than
0.006% false positive rate (per packet).

The use of Bloom filters makes Anagram memory and computationally efficient and
allows for the modeling of a mixture of different sizes of n-grams extracted from packet
payloads, i.e. an Anagram model need not contain samples of a fixed size gram. This
strategy is demonstrated to exceed PAYL in both detection and false positives rates.
Furthermore, Anagram’s modeling technique is easier to train, and allows for the estima-
tion of when the sensor has been trained enough for deployment. The Bloom filter model
representation also provides the added benefit of preserving the privacy of shared con-
tent models and alerts for cross-site correlation.

2 Including ourselves; a proposal to study counter-evasion techniques led to the work reported

herein.

Of particular interest here is that Anagram is shown to be robust against existing mim-
icry attack approaches. We demonstrate Anagram’s ability to counter the simple mimicry
attacks levied against PAYL. Furthermore, Anagram is designed to defeat training and
mimicry attacks by using randomized n-gram modeling. The approach presented raises
the bar against the enemy, making it far more difficult to design an n-gram attack against
Anagram. By randomizing the portion of packets that Anagram extracts and models,
mimicry attackers cannot easily guess how and where to pad malicious content to avoid
detection. We also describe the use of a feedback loop between the Anagram sensor and
host-based detectors, thereby updating Anagram models over time and improving its
detection performance. Thus, the combination of model randomization and a feedback
loop makes it more difficult to evade detection by training and mimicry attacks. The
contributions of this paper include:

• A new statistical, language-independent, efficient content-based anomaly detec-
tor based upon semi-supervised training of higher-order n-gram analysis that is
shown to be resistant against existing mimicry attacks. The sensor does not rely
upon a specification or semantic analysis of the target applications;

• Robustness against future mimicry attacks by the use of a novel, low-overhead
randomized testing strategy, making it difficult for the attacker to guess where
or how to pad content;

• Development of a run-time measure of the “stability” of a network’s content
flow, providing a reasonable estimate of when the sensor has been well enough
trained and is ready for deployment.

• A robust means of representing content-based alerts for cross-site alert sharing
and robust signature generation using a Bloom Filter representation of anoma-
lous byte sequences3;

• A new defensive strategy showing how a symbiotic relationship between host-
based sensors and a content-based sensor can adapt over time to improve accu-
racy of modeling a site’s content flow.

The rest of the paper is organized as follows. Section 2 details the Anagram sensor
and its relevant algorithms. Performance, detection rate, and false positive characteristics
are presented testing Anagram against real network traffic traces infected with a collec-
tion of worms and viruses. Section 3 describes Anagram’s robustness against the clev-
erly crafted blended polymorphic worm reported in [1], previews the possibility of new
customized mimicry attacks being crafted against Anagram, and describes randomization
techniques for defeating such attacks. In section 4 we present the concept of coupling a
“shadow server” with Anagram and discuss how the combination can effectively support
the techniques presented in section 3, as well as support robust signature generation and
patch generation. Section 5 discusses related work, while section 6 concludes the paper
with a call for collaboration among researchers at distributed sites.

2 Anagram – Modeling a Mixture of N-grams

Anagram’s approach to network payload anomaly detection uses a mixture of higher
order n-grams (n>1) to model and test network traffic content. N-gram analysis is a well-
known technique has been used in a variety of tasks, such as system call monitoring [15-
17]. In Anagram, the n-grams are generated by sliding windows of arbitrary lengths over

3 The representation also permits patch generation systems to share anomalous data for local patch

generation across an “application community” [13, 14].

a stream of bytes, which can be per network packet, per request session, or other type of
data unit.

In our previous work on network payload anomaly detection, PAYL [10, 11], we
modeled the length-conditioned 1-gram frequency distribution of packet payloads, and
tested new packets by computing the Mahalanobis distance of the test packet against the
model. This approach is effective at capturing attacks that display abnormal byte distri-
butions, but it is likely to miss well-crafted attacks that focus on simple CPU instructions
and that are crafted to resemble normal byte distributions. For instance, although a stan-
dard CodeRed II’s buffer overflow exploit uses a large number of “N” or “X” characters
and so appears as a peak in the frequency distribution, [18] shows that the buffer can
instead be padded with nearly any random byte sequence without affecting the attack
vector. Another example is the following simple phpBB forum attack:

GET /modules/Forums/admin/admin_styles.php?phpbb_root_path=http
://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;wget%20216.15.209.4/cri
man;chmod%20744%20criman;./criman;echo%20YYY;echo|..HTTP/1.1.Ho
st:.128.59.16.26.User-Agent:.Mozilla/4.0.(compatible;.MSIE.6.0;
.Windows.NT.5.1;)..

In such situations, the abnormal byte distribution model is insufficient by itself to
identify these attack vectors as abnormal data. However, invariants remain in the packet
payloads: the exploit code, the sequence of commands, or the special URL that should
not appear in the normal content flow to the target application [19, 20]. By modeling
higher order n-grams, Anagram captures the order dependence of byte sequences in the
network payload, enabling it to capture more subtle attacks. The core hypothesis is that
any new, zero-day exploit will contain a portion of data that has never before been deliv-
ered to the application. These subsequences of new, distinct byte values will manifest as
anomalous” n-grams that Anagram is designed to efficiently and rapidly detect.4

In the following sections we will give a detailed description of Anagram, which out-
performs PAYL in the following respects:

• Accuracy in detecting anomalous payloads, even carefully crafted ‘mimicry at-
tacks’ with a demonstrably lower false positive rate;

• Computational efficiency in detection by the use of fast (and incremental, linear-
time) hashing in its Bloom filter implementation;

• Model space efficiency since PAYL's multiple-centroid modeling is no longer
necessary, and Bloom filters are compact;

• Fast correlation of multiple alerts while preserving privacy as collaborating sites
exchange Bloom filter representations of common anomalous payloads;

• The generation of robust signatures via cross-site correlation for early warning
and detection of new zero day attacks.

In the following sections, we will describe the mechanisms in detail and present ex-
perimental results of testing Anagram against network traces sniffed from our local LAN.

2.1 High Order N-gram Payload Model

While higher order n-grams contain more information about payloads, the feature space
grows exponentially as n increases. Comparing an n-gram frequency distribution against
a model is infeasible since the training data is simply too sparse; the length of a packet is

4 Note that some attacks may not include byte sequences that are “code-like”, and hence testing

content for such code-like data subsequences is not guaranteed to cover all attack cases. The
language independence of anomalous n-grams may be broadly applicable to these and other at-
tacks.

too small compared to the total feature space size of a higher-order n-gram. One TCP

packet may contain only a thousand or so n-grams, while the feature space size is 256
n
.

Clearly, with increasing n, generating sufficient frequency statistics to estimate the true
empirical distribution accurately is simply not possible in a reasonable amount of time.

In Anagram, we therefore do not model the frequency distribution of each n-gram.
Rather, we observe each distinct n-gram seen in the training data and record each in a
space efficient Bloom filter. Once the training phase terminates, each packet is scored by
measuring the number of n-grams it did not observe in the training phase. Hence, a
packet is scored by the following formula, where Nnew is the number of new n-grams not

seen before and T is the total number of n-grams in the packet: Score = Nnew / T ∈ [0,1].
At first glance, the frequency-based n-gram distribution may contain more informa-

tion about packet content; one might suspect it would model data more accurately and
perform better at detecting anomalous data, but since the training data is sparse, this
alternative “binary-based model” performs significantly better than the frequency-based
approach given the same amount of training data.

We analyzed the network traffic for the Columbia Computer Science website and, as
expected, a small portion of the n-grams appear frequently while there is a long “tail” of
n-grams that appear very infrequently. This can be seen in Table 1, which displays the
percentage of the n-grams by their frequency counts for 90 hours of CS web traffic.
Since a significant number of n-grams have a small frequency count, and the number of
n-grams in a packet is very small relative to the whole feature space, the frequency-
distribution model incurs relatively high false positives. Thus, the binary-based model
(simply recording the distinct n-grams seen during training) provides a reasonable esti-
mate of how “normal” a packet may be. This is a rather surprising observation; as we
will demonstrate, it works very well in practice. The conjecture is that true attacks will
be delivered in packets that contain many more n-grams not observed in training than
“normal” packets used to train the model. After all, a true zero-day attack must deliver
data to a server application that has never been processed by that application before.
Hence, the data exercising the vulnerability is very likely to be an n-gram of some size
never before observed. By modeling a mixture of n-grams, we increase the likelihood of
observing these anomalous grams.

To validate this conjecture, we compare the ROC curves of the frequency-based ap-
proach and the binary-based approach for the same datasets (representing equivalent
training times) as displayed in figure 1. We collected the web traffic of two CS depart-
mental web servers, www and www1; the former serves the department webpage, while
the latter serves personal web pages. Traffic was collected for two different time periods:
a period of sniffed traffic from the year 2004 and another dataset sniffed in 2006. The
2004 datasets5 (www-04 and www1-04) contain 160 hours of traffic; the 2006 datasets
(www-06 and www1-06) contain about 560 hours. We tested for the detection of several
real worms and viruses: CodeRed, CodeRed II, WebDAV, Mirela, a php forum attack, and a
worm that exploits the IIS Windows media service, the nsiislog.dll buffer overflow vulner-
ability (MS03-022). These worm samples were collected from real traffic as they appeared in
the wild, from both our own dataset and from a third-party.

For the first experiment, we used 90 hours of www1-06 for training and 72 hours for
testing. (Similar experiments on the other datasets display similar results, and we skip
them here for brevity.) To make it easier for the reader to see the plots, the curves are
plotted for the cases where the false positive rate is less than 0.03%. Both the detection

5 The 2004 dataset was used to train and test PAYL as reported in [11], and is used here for

comparative evaluation.

rate and false positive rate are calculated based on packets with payloads; non-payload
(e.g., control) packets were ignored. Notice that the detection rate in figure 1 is based on
per packet, instead of per attack. Some attacks have multiple packets; while fragmenta-
tion can result in a few packets appearing normal, we can still guarantee reliable attack
detection over the entire set of packets. For example, for the IIS5 WebDAV attack, 5-
grams detect 24 out of 25 packets as being anomalous. The only missed packet is the
first packet, which contains the buffer overflow string “SEARCH /AAA……AA”; this is
not the key exploit part of the attack. For further comparison, we list minimum false
positive rates when detecting all attack attempts (where an attack is detected if at least
80% of the packets are classified as anomalous) for both binary-based and frequency-
based models in table 2.

Table 2. The false positive rate (%) of the two approaches using different n-grams when achiev-
ing 100% detection rate, www1-06 train/test dataset

 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram

Freq-based 30.40205 0.18559 0.08858 0.13427 0.30792 0.41477

Binary-based 0.02109 0.01406 0.00634 0.00703 0.00914 0.00914

The binary-based approach yields significantly better results than the frequency-based

approach. When a 100% detection rate is achieved for the packet traces analyzed, the
false positive rate of the binary-based approach is at least one order of magnitude less
than the frequency-based approach. The relatively high false positive rate of the fre-
quency-based approach suggests much more training is needed to capture accurate statis-
tical information to be competitive. In addition, the extremely high false positive rate of
the 3-gram frequency-based approach is due to the fact that the 3-grams of the php attack
all appear frequently enough to make it hard to distinguish them from normal content
packets. On the other hand, the binary-based approach used in Anagram results in far
better performance. The 0.01% false positives average to about 1 alert per hour for
www1 and about 0.6 alerts per hour for www. The result also shows that 5-grams and 6-
grams give the best result, and we’ve found this to be true for others as well.

As previously stated, Anagram may easily model a mixture of different n-grams sim-
ply by storing these in the same Bloom filter. However, for larger n-grams additional
training may be required; as we shall describe shortly, our modeling approach allows us
to estimate when the sensor has been sufficiently trained.

0 0.01 0.02 0.03
70

75

80

85

90

95

100

False Positive Rate (%)

D
e

te
c
ti
o

n
 R

a
te

 (
%

)
o
f

a
ll

p
a

c
k
e
ts

Freq-based, 5-gram
Binary-based, 5-gram
Freq-based, 3-gram
Binary-based, 3-gram

Fig. 1. ROC curves comparing the frequency-
based and binary-based n-gram approach

Table 1. The percentage of the observed
unique n-grams for different frequencies of
occurrence for 90 hours of training traffic

freq
count

3-grams 5-grams 7-grams

>=5 58.05% 39.13% 32.53%

2 to 4 22.17% 28.22% 28.48%

1 19.78% 32.65% 38.99%

2.2 Model Size and Bloom Filters

As previously stated, one significant issue when modeling with higher order n-grams is
memory overhead. By leveraging the binary-based approach, we can use more memory-
efficient set-based data structures to represent the set of observed n-grams. In particular,
the Bloom filter (BF) [21] is a convenient tool to represent the binary model. Instead of
using n bytes to represent the n-gram, or even 4 bytes for a 32-bit hash of the n-gram, the
Bloom filter can represent a set entry with just a few bits, reducing memory requirements
by an order of magnitude or more.

A Bloom filter is essentially a bit array of m bits, where any individual bit i is set if
the hash of an input value, mod m, is i. As with a hash table, a Bloom filter acts as a

convenient one-way data structure that can contain many items, but generally is orders-
of-magnitude smaller. Operations on a Bloom filter are O(1), keeping computational
overhead low. A Bloom filter contains no false negatives, but may contain false positives
if collisions occur; the false positive rate can be optimized by changing the size of the bit
array and by using multiple hash functions (and requiring all of them to be set for an
item to be verified as present in the Bloom filter; in the rare case where one hash func-
tion collides between two elements, it’s highly unlikely a second or a third would also
simultaneously collide). By using universal hash functions [22], we can minimize the
probability of multiple collisions for n-grams in one packet (assuming each n-gram is
statistically independent); the Bloom filter is therefore safe to use and does not nega-
tively affect detection accuracy.

2.2.1 Memory overhead
While Bloom filters are comparatively small even when inserting a large number of

entries, choosing the optimal size of a Bloom filter is nontrivial, since Anagram is not
aware of a site’s distribution (and the number of unique n-grams) before building its
model. Additionally, a Bloom filter’s size cannot be dynamically resized, as the hash
values cannot be recomputed without the original underlying training data.6

A large Bloom filter will waste memory, but small Bloom filters saturate more
quickly, yielding higher false positive rates. It is worth pointing out that “large” is rela-
tive; a 24-bit Bloom filter is capable of holding 2

24
/nh elements, where nh represents the

number of hash functions used, in only 2MB of memory, e.g., each n-gram inserted uses
about 2.7 bits when 3 hash functions are used. Additionally, we can use traditional com-
pression methods (e.g., LZW) for storing a sparse Bloom filter, which significantly re-
duces storage and transport costs. As discussed later in this paper, our experiments anec-
dotally suggest this Bloom filter is large enough for at least 5-grams, assuming a mostly
textual distribution.

The presence of binary data does significantly increase Bloom filter requirements; if
allocating extra initial memory is undesirable, a “layered” approach can be employed,
where new Bloom filters are created on demand as previous Bloom filters saturate, with
a small constant-time overhead. It should be evident that Bloom filters can be trivially
merged via bitwise ORing and compared via bitwise ANDing.

2.3 Learning Issues

The huge feature space of higher order n-grams makes estimating the frequency distribu-
tion infeasible. In the case of representing distinct n-grams, we pose the following ques-
tions: how long do we need to train before deploying the sensor in detection mode?

6 While the training data can be kept, we do not consider this practical for actual deployment,

especially if techniques like incremental and run-time training are used.

Further, how well can Anagram handle noisy training data since the model is binary-
based?

2.3.1 When is the model well trained?
Since there are many distinct n-grams, many of which may take days or weeks to see,

when can we say the model is well trained and ready to use? We first check the likeli-
hood of seeing a new n-gram with additional training. Figure 2 shows the percentage of
the new distinct n-grams out of every 10,000 content packets when we train for up to 500
hours of traffic data. The key observation is that during the initial training period, one
should expect to see many distinct n-grams. Over time, however, fewer distinct “never
before seen” n-grams should be observed. Hence, for a given value of n, a particular site
should exhibit some rate of observing “new” distinct n-grams within its “normal” con-
tent flow. By estimating this rate, we can estimate how well the Anagram model has been
trained. When the likelihood of seeing new n-grams in normal traffic is stable and low,
the model is stable; we can then use the rate to help detect the attacks, as they should
contain a higher percentage of unseen n-grams. Figure 3 plots the false positive rates of
different models, varying in n-gram size and length of training time, when tested on the
72 hours of traffic immediately following the training data.

From these plots, we can see that as the training time increases, the false positive rate
generally goes down as the model is more complete. After some point, e.g. 4 days’ in
figure 3, there is no further significant gain, and the FP rate is sufficiently low. Higher
order n-grams need a longer training time to build a good model, so 7-grams display a
worse result than 5-grams given the same amount of training. While the 3-gram model is
likely more complete with the same amount of training, it scores significantly worse: 3-
gram false positives do not stem from inadequate training, but rather because 3-grams
are not long enough to distinguish malicious byte sequences from normal ones.7

0 50 100 150 200 250 300 350 400 450
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Per 10000 content packets

L
ik

e
lih

o
o
d
 o

f
s
e
e

in
g
 n

e
w

 n
-g

ra
m

s 3-grams
5-grams
7-grams

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

Training Dataset Length (in days)F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)
w

h
e
n
 1

0
0
%

 D
e
te

c
ti
o
n
 R

a
te

3-grams
5-grams
7-grams

7 We hypothesize, though, that as the number of new 3-grams converges very rapidly, that the rate

of detection of unique 3-grams during testing may be a good sign of an attack. In general,
anomalous content may be measurable as a function of the size of the gram detected that was
not seen during training.

Fig. 2. The likelihood of seeing new n-grams
as training time increases.

Fig. 3. False positive rate (with 100% detec-
tion rate) as training time increases.

In theory, Anagram should always improve with further training – if we can guarantee
a clean training dataset, which is crucial for the binary-based approach. However, ob-
taining clean training data is not an easy task in practice. During our experiments, in-

creased training eventually crosses a threshold where the false positive rate starts in-
creasing, even if the training traffic has been filtered for all known attacks. The binary-
based approach has significant advantages in speed and memory, but it’s not tolerant of
noisy training, and manual cleanup is infeasible for large amounts of training data. We
therefore introduce semi-supervised training in the next section to help Anagram be
more robust against noisy data.

2.3.2 Semi-supervised Learning
The binary-based approach is simple and memory efficient, but too sensitive to noisy

training data. One form of supervised training is quite simple. We utilize the signature
content of Snort rules obtained from [12] and (a collection of about 500) virus samples
to precompute a known “bad content model”. We build a bad content Bloom filter con-
taining the n-grams that appear in the two collections, using all possible n that we may
eventually train on (e.g., n=2~9 in our experiments). This model can be incrementally
updated when new signatures have been released.

It’s important to note, however, that signatures and viruses often contain some normal
n-grams, e.g., the ‘GET’ keyword for HTTP exploits. To remove these normal n-grams,
we can maintain a small, known-clean dataset used to exclude normal traffic when gen-
erating the bad content BF. This helps to exclude, as a minimum, the most common
normal n-grams from the bad content model.

In one experiment, we used 24 hours of clean traffic to filter out normal n-grams from
the bad content BF. Figure 4 shows the distribution of normal packets and attack packets
that match against the bad content model. The X axis represents the “matching score”,
the percentage of the n-grams of a packet that match the bad content model, while the Y
axis shows the percentage of packets whose matching score falls within that score range.
The difference between normal and attack packets is obvious; where the normal traffic
barely matches any of the bad content model, attack packets have a much higher per-
centage, so that we can reliably apply the model for accurate detection. The resulting bad
content BF contains approximately 46,000 Snort n-grams and 30 million virus n-grams
(for n=2…9).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bad Content Model Matching Score

P
e
rc

e
n
ta

g
e
 o

f
th

e
 p

a
c
k
e
ts

Normal Content Packets

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Bad Content Model Matching Score

P
e
rc

e
n
ta

g
e
 o

f
th

e
 p

a
c
k
e
ts

Attack Packets

Fig. 4. Distribution of bad content scores for normal packets (left) and attack packets (right).

The “bad content model” is used during both training and detection. During training,
the incoming data stream is first filtered through Snort to ensure it is free of known, old
attacks. Packets are then compared against the bad content model; any n-gram that
matches the bad content model is dropped. The whole packet is also dropped if it
matches too many n-grams from the bad content model – as new attacks often reuse old
exploit code – to avoid modeling new malicious n-grams. In our experiment, we estab-
lished a 5% bad n-gram threshold before ignoring a training packet. While this is rather

strict, ignoring a packet during training time is harmless as long as relatively few packets
are dropped, as figure 4 shows.

During detection, if a never-before-seen n-gram also appears in the bad content model,
its detection score is further weighted by a factor t over other malicious n-grams; in our
experiment, we set t to 5. This enables us to further separate malicious packets from
normal ones in order to achieve higher detection accuracy. To show the improvement we
gain by using the bad content model, figure 5 compares the false positive rate before and
after using it for different n-gram sizes on two datasets. The false positive rates are sig-
nificantly reduced with the help of this bad content model.

2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Value n of n-gramsF
a
ls

e
 P

o
s
ti
ti
v
e
 R

a
te

 (
%

)
w

h
e
n
 1

0
0
%

 D
e
te

c
ti
o
n
 R

a
te

dataset www1-06, normal
dataset www1-06, supervised
dataset www-06, normal
dataset www-06, supervised

Fig. 5. The false positive rate (with 100% detection rate) for different n-grams, under both nor-
mal and semi-supervised training.

2.4 Signature Generation and Privacy-Preserving Cross-site Collaboration

One other substantial advantage of Anagram is its ability to generate robust signatures.
When a suspicious packet is detected, the corresponding malicious n-grams are identi-
fied in the packet for free. These n-grams are good target for further analysis and signa-
ture generation. It’s also particularly important to note that the order of the distinct
anomalous n-grams is irrelevant, since it’s just a set of n-grams. An attempt to avoid
detection by an attacker by reordering their attack vector code will therefore fail.

Revisiting the php attack presented before, we show here the signatures generated by
flattening out the detected malicious n-grams according to their positions, using 3-grams,
5-grams and 7-grams, respectively. To present the nonprintable characters in the follow-
ing signatures, we use “.” as in tcpdump. An asterisk (“*”) represents a “don’t-care”
wildcard, similar to a Kleene star match in a regular expression.

GET /modules/Forums/admin/admin_styles.phpadmin_styles.php?phpb
b_root_path=http://81.174.26.111/cmd.gif?&cmd=cd%20/tmp;wget%20
216.15.209.4/criman;chmod%20744%20criman;./criman;echo%20YYY;ec
ho|..HTTP/1.1.Host:.128.59.16.26.User-Agent:.Mozilla/4.0.(compa
tible;.MSIE.6.0;.Windows.NT.5.1;)..

N=3:
*?ph*bb_*//8*p;wg*n;c*n;./c*n;ec*0YYY;echo|H*26.U*1;).*

N=5:
*ums/ad*in/admin_sty*.phpadmin_sty*hp?phpbb_root_path=http://81

.174.26.111/cmd*cmd=cd%20/tmp;wget%20216*09.4/criman;chmod%2074

4%20criman;./criman;echo%20YYY;echo| HTT*6.26.Use*5.1;)..*

N=7:
*dules/Forums/admin/admin_styles.phpadmin_styles.php?phpbb_root

_path=http://81.174.26.111/cmd.gi*?&cmd=cd%20/tmp;wget%20216.15

.209.4/criman;chmod%20744%20criman;./criman;echo%20YYY;echo|

HTTP/*59.16.26.User-*T 5.1;)..*

All of these signatures are quite accurate: no normal packet matches more than 5% of
the malicious n-gram signatures of the attack. Generally, low order n-grams produces
less optimal signatures, since relatively few n-grams will be detected as malicious and
they are not long enough to capture useful information. 7-grams produce the best signa-
ture; in theory, the longer the n-gram the better the generated signature, higher training
and false positive costs notwithstanding.

Besides the benefits of accurate signature generation, Anagram’s models enable
cross-site privacy-preserving information sharing by using Bloom Filters. In our previ-
ous PAYL work [11], we discussed the idea of cross-site collaboration and its use for
zero-day worm detection and signature generation, followed by several approaches for
alert information sharing. However, PAYL’s correlation techniques traded accuracy for
privacy.

Instead, Anagram can share Bloom Filters with no loss of accuracy. Suspect payloads
are identified by the sensor, and the particular anomalous n-grams (of any size) are
stored in a Bloom Filter.8 The use of one-way hashes, combined with the large number
of possible n-grams, makes reverse-engineering or brute forcing infeasible. By checking
the n-grams of local alerts against the remote alert Bloom Filters, it’s easy to tell how
similar the alerts are to each other, and identify the common malicious n-grams that can
be used to construct a candidate attack signature.

This is a substantial improvement over the previous approaches reported by several
researchers whereby most common tokens, longest common substrings, and/or longest
common subsequences are computed in order to identify common substrings between
two or more suspect payloads. These computations intend to compute string signatures
common across multiple instances of a polymorphic worm attack. Anagram essentially
"pre-computes" common string subsequences via the common anomalous n-grams stored
in the Bloom Filter, irrespective of the order of appearance of any of these anomalous
strings, and thereby speeds up correlation.

Due to a lack of space, we refer the reader to [23] for further details on the mechanics
and effectiveness of our correlation approaches.

3 Randomized Models to thwart Mimicry Attacks

3.1 Anagram against Mimicry Attack

As mentioned earlier, mimicry attacks are perhaps the most significant threat to any
anomaly detector, such as [1], which details a polymorphic mimicry worm targeting
PAYL. This smart worm learns a site’s normal traffic pattern by sniffing then blends the
exploit packet with characters to simulate the normal byte frequency distribution to suc-
cessfully evade PAYL’s 1-gram models. Since this mimicry attack pads without consid-
ering the sequence of bytes, Anagram can easily detect any variants of the crafted at-
tacks9.

8 The number of anomalous n-grams must also be transmitted, as it is used in the threshold logic

to identify anomalous packets.
9 We are very grateful to Wenke Lee and his colleagues for providing the polymorph engine for

use in our research.

We adapted this worm to launch a mimicry attack against Anagram. Instead of pad-
ding the packet to simulate the byte frequency, we padded attack packets with normal
strings; in this case, long URLs of the target website which should be, by definition,
composed of normal n-grams. Although the anomaly scores are greatly reduced by this
padding, the remaining portions of the crafted attack packets still have enough abnormal
n-grams to be detected by Anagram. Besides the “sled”, which provides the opportunity
for crafted padding, the attack packet still requires a byte sequence for the polymorphic
decryptor, the encrypted exploit, encoded attacks, and the embedded mapping table.
Since the amount of space in each packet is limited, the mimicked worm content contain-
ing the exploit vector is purposely spread over a long series of fragmented packets. Thus,
the worm is fragmented so that each packet on its own does not appear suspicious. This
strategy is described in the aforementioned paper and is akin to a multi-partite attack
strategy where the protocol processor assembles all of the distributed pieces necessary
for the complete attack.

Using the blended polymorph worm engine, we generated different variants of the
worm. The following table shows the maximum padding length of each version. Each
cell in the top row contains a tuple (x, y), representing a variant sequence of y packets of
x bytes each. The second row represents the maximum number of bytes that can be used
for padding in each packet. It’s obvious that there is a substantial chunk of packet that
needs to be reserved for the exploit, where we conjecture malicious higher order n-grams
will appear to encode the encrypted exploit code or the decryptor code.

Table 3. The padding length for a packet of different varieties of the mimicry attack

Version 418, 10 418, 100 730, 10 730, 100 1460, 10 1460, 100

Padding length 125 149 437 461 1167 1191

We tested Anagram over these modified mimicry attacks where the padding contained

normal, non-malicious n-grams, and all of the attacks were successfully detected. This is
the case since the crafted attack packets still require at least 15%-20% of the n-grams for
code, which were detected as malicious. The false positive rates grows, however, as the
packet length gets longer. The worst case for the (1460, 100) experiment yields a false
positive rate around 0.1%. The semi-supervised learning strategy employed in Anagram
using a model of “malicious n-grams” doesn’t help here since this mimicry worm uses
encryption and data encoding to obfuscate its content. We also tested Anagram against
polymorphic worms generated by the CLET engine [24]. However, since CLET encrypts
the content and is not designed to mimic high order n-grams, it’s very easy for Anagram
to detect them.10

This experiment demonstrates that Anagram raises the bar for attackers making mim-
icry attacks harder since now the attackers have the task of carefully crafting the entire
packet to exhibit a normal content distribution. Further effort is required by mimicry
attacks to encode the attack vectors or code in a proper way that appears as normal high
order n-grams. Without knowing exactly which value of n, the size of the modeled grams,
they should plan for, the problem becomes even harder. We take this uncertainty and
extend it in the next section for a more thorough strategy to thwart mimicry attacks.

10 We invite the security community to work with us in continuing the development and detection

of mimicry attack-enabled worms.

3.2 Randomization

The general idea of payload-based mimicry attack is simply to evade detection by craft-
ing small pieces of exploit code with a large amount of “normal” padding data to make
the whole packet look normal. But as we’ve seen in the example above, no matter what
techniques are used for padding, there has to be some non-padded “exposed” sections of
data to decode the exploit of the target vulnerability. The attacker has to determine
where to pad with normal data, and where to hide the exploit code. Without knowing
exactly what portions of the packet are tested by the detector, the task is complicated,
and possibly reduced to guessing, even if the attacker knew what padding would be
considered normal.

We performed experiments using randomized modeling for PAYL, where we com-
puted multiple models based on different secret partitions of the data stream. Although
the strategy successfully thwarted mimicry attack, it substantially increased the overhead
of the sensor. A future report will detail those experiments.

Here, we propose an alternative general strategy to thwart mimicry attacks via Ran-

domized Testing that does not incur any substantial overhead. Instead of testing and
scoring the whole packet payload, we randomly partition packets into several (possibly
interleaved) substrings or subsequences S1,S2,…,SN, and test each of them separately
against the same single normal BF model and the single bad content model. Since the
partition is randomly chosen by each sensor instance and kept secret, we assume the
attackers cannot gain this information before they compromise the machine. The attack-
ers could only succeed if they can craft an attack vector ensuring that the data is normal
with respect to any randomly selected portion of a packet; this makes the attacker’s tasks
much harder than before. This technique can be generally applied to any content anom-
aly detector.

To demonstrate the effectiveness of this counter-evasion tactic, we developed a sim-
ple randomization framework for Anagram. We generate a random binary mask with
some length l (say, 100 bytes), and repeatedly apply this mask to the contents of each
packet to generate test partitions. The mask corresponds to subsequences of contiguous
bytes in the packet tested against the model; each is scored separately. The sequence of
bytes appearing at locations where the mask had bits set to 1 are tested separately from
those byte sequences where the mask had zero bits, randomly separating it into two non-
overlapping parts. The packet anomaly score is adapted from section 2.1 to maximize

the score over all partitions, i.e. ()ii TNScore
new

/max= , where
newiN and Ti are the

number of new and total n-grams in partition i, respectively. This can easily be extended
to overlapping regions of the packet, and more than just two randomly chosen portions.

There are several issues to consider. First, we want to optimize binary mask genera-
tion. While the mask can be a purely random binary string, we may then lose information
about sequences of bytes. Since Anagram models n-grams, it’s not surprising that this
strategy performs poorly. Instead, we randomize the mask using a “chunked” strategy, i.e.
any string of contiguous 0’s or 1’s in the mask must be at least X bits long (correspond-
ing to X contiguous bytes in a partition), enabling us to preserve most of the n-gram
information for testing. In our experiments, empirical testing yielded 10 bits as a good
candidate size; automatically determining the optimal value is an interesting open ques-
tion for future research.

Another observation is that the length of the randomly chosen partitions is best bal-
anced, i.e. a similar number of 1’s and 0’s. Such balancing avoids the extreme cases of
too short payload snippets which lack sufficient statistical information. The false positive
rate is usually much higher when the partitions have extremely unbalanced lengths; for

example, a partition where one fragment is 10% of the total length and the other is 90%
produces a poor false positive rate.

For the results in figure 6, we use this “chunk-based binary mask strategy” and guar-
antee that one partition of the packet datagram is at most double the size of the other one.
Again, we measure the false positive rate when we achieve 100% detection rate for our
test traces. For each size n-gram, we repeated the experiment 10 times to show the aver-
age (the middle plot) and standard deviation (the vertical bars), both for the unsuper-
vised learning (left plot) and semi-supervised learning (right plot) using the malicious n-
gram content model. The experiment was performed on dataset www1-06, trained for 90
hours and tested on the following 72 hours of traffic.

On average, the randomized models produce comparable false positive rates to the
non-randomized approach, especially when using semi-supervised learning. The lower
order n-grams are more sensitive to partitioning, so they exhibit a high standard devia-
tion, while higher order n-gram models are relatively stable. Further research needs to be
done to determine a good partitioning approach that can reduce the deviation while
keeping the essential randomization strategy intact. We believe randomization is the
correct direction, and a valuable step toward complicating the task for the mimicry at-
tacker.

Fig. 6. The average false positive rate and standard deviation with 100% detection rate for ran-
domized testing, with normal training (left) and semi-supervised training (right).

3.3 Threshold reduction and “extreme” padding

In the experiments we reported above, we noticed that the randomized models’ false
positive rates, while comparable on average, exhibit a higher variance than the case
where models are not randomized. Consider an extreme mimicry attack: suppose an
attacker crafts packets with only one instruction per packet, and pads the rest with nor-
mal data. If a 100% detection rate is desirable, lowering the score threshold to some
minimum nonzero value ε might be the only way to achieve this goal. Unsurprisingly,
this approach corresponds to a direct increase in the false positive rate, which may vary
between 10% to 25% of all packets, depending on the n-gram sizes chosen and the
amount of training of the model.

Such a false positive rate may be viewed as impractical, rendering the sensor useless.
We believe this is wrong. The false positive rate is not always the right metric – espe-
cially if Anagram is used in conjunction with other sensors. For example, Anagram may
be used to shunt traffic to a host-based, heavily instrumented shadow server used as a
detector; in other words, we do not generate Anagram alarms to drop traffic or otherwise

mitigate against (possibly false) attacks, but rather we may validate whether traffic is
indeed an attack by making use of a host-based sensor system. If we can shunt, say 25%
of the traffic for inspection by an (expensive) host-based system, while leaving the re-
maining normal traffic unabated to be processed by the operational servers, the proposed
host-based shadow servers can amortize their overhead costs far more economically.
Thus, the false positive rate is not as important as the true positive rate, and false posi-
tives do not cause harm. We describe this approach in greater detail in section 4.

4 Adaptive Learning

4.1 Training Attacks versus Mimicry Attacks

We distinguish between training attacks and mimicry attacks: A mimicry attack is the
willful attempt to craft and shape an attack vector to look normal with respect to a model
computed by an anomaly detector. The attacker would need to know the modeling algo-
rithm used by the sensor and the normal data it was trained on. The polymorphic blended
attack engine discussed in Section 3 assumes to know both by sniffing an environment’s
normal data (an open question is whether the normal data of one site produces suffi-
ciently similar models to other sites that are targeted by a mimicry attack). Alternatively,
a training attack is one whereby the attacker sends a stream of data incrementally or
continuously distant from the normal data at a target site in order to influence the anom-
aly detector to model data consistent with the attack vector. Attack packets would appear
normal since they were modeled. This type of attack would succeed if the attacker were
lucky enough to send the stream of data while the anomaly detector was in training
mode. Furthermore, the attacker would presume that the stream of “malicious training
data” would go unnoticed by the sensor while it was training.

We presented the concept of randomization in order to thwart mimicry attack. Even if
the attacker knew the normal data distribution, the attacker would not know the actual
model used by the sensor. However, we have not addressed training attacks. [25] ex-
plores this problem and suggests several theoretical defenses. For example, Anagram’s
semi-supervised learning mechanism can help protect the model if learning attacks recy-
cle old exploit code. However, if the learning attack does not contain any known bad n-
grams, Anagram cannot detect it by itself. We conjecture that the coupling of the training
sensor with an “oracle” that informs the sensor of whether or not the data it is modeling
is truly normal can thwart such training attacks. For example, if the attacker sends pack-
ets that do not exploit a server vulnerability, but produces an error response, this should
be noticed by the sensor in training mode; we discuss this further in the next section.
Such feedback-based learning does not address all cases, e.g., a learning attack embed-
ded into a HTTP POST payload, which would generate a legitimate server response.
Randomization may also be valuable for learning attacks; we leave the exploration of
such defense mechanisms for future research.

4.2 Feedback-based learning and filtering using instrumented shadow servers

Host-based fault detection and patch generation techniques (such as Stack-
Guard/MemGuard [26], STEM [27], DYBOC [28], and many others) hold significant
promise in improving worm and attack detection, but at the cost of significant computa-
tional overhead on the host. The performance hit on a server could render such tech-
nologies of limited operational value. For instance, STEM [27] imposes a 200% over-
head for an entirely-instrumented application. DYBOC [28] is more proactive and de-
signed to be deployed on production servers to provide faster response, but still imposes

at least a 20% overhead on practical web servers. If one can find a means of reducing the
cost of this overhead, the technology will have a far greater value to a larger market.

We envision an architecture consisting of both production servers and an instru-
mented shadow server, with the latter executing both valid and malicious requests se-
curely but with significant overhead. A network anomaly flow classifier is placed in
front of these pools and shunts traffic based on the anomaly content in incoming requests.

In order for the flow classifier to be appropriate for this architecture, we need to en-
sure that no malicious requests are sent to the production pool, as those machines may be
potentially vulnerable to zero-day attacks. It is acceptable if a small fraction of the traf-
fic deemed as false positives are shunted to the shadow server, because this server will
indeed serve the requests, but with a greater latency. Nothing has been lost, but only
some amount of response time for a minority portion of the traffic flow. In other words,
an anomaly detector that wants to act as this classifier should have a 100% true positive
detection rate and a reasonably low false positive rate. We can characterize the latency

in such an architecture as l'= l × 1− fp()()+ l × os × fp(), where l is the standard latency

of a service, os is the shadow server overhead, and fp is the false positive rate. If we want
to target a maximum latency increase l'−l of 1%, given a 20% overhead in using the
shadow server, the false positive rate can be as high as approximately 10%. As we de-
scribed in section 3.3, we believe this order-of-magnitude is achievable, along with a
100% detection rate, by setting the threshold to some low ε. This places network content
flow anomaly detectors in a completely new light. Zero false positive rates are simply
not the right objective. Furthermore, a symbiotic relationship may emerge over time.
False positives validated by the shadow server serve as training data to improve the
accuracy of the anomaly detector. In time, the false positive rate would be decrease and
less traffic would be served by the shadow server; we discuss this in the next section.

4.2.1 Adaptive model training of Anagram with shadow servers
Anagram’s detection model assumes no noise in the model, and uses semi-supervised

training (section 2.3.2) to ensure clean training traffic. This approach can be enhanced
with a hybrid shadow server architecture:

1. Use the shadow server as a training supervisor. This entails an initial passive Ana-
gram deployment, and a “slow training mechanism” whereby the shadow server is
initially sent all requests, and only requests generating a normal response are then
sent to Anagram for training. After a sufficient amount of training has been done,
Anagram can then be put into an active deployment.

2. Use a short training time, and use the shadow server as a false positive feedback
mechanism. In this scenario, Anagram only trains on a small fraction of traffic as-
sumed to be good and is then immediately deployed. While the false positive rate
will be higher, Anagram can watch for normal responses from the shadow server
and can then include the appropriate n-grams of the original request in its model of
“normal traffic”. This can incrementally reduce the false positive rate as the system
continues processing requests.

Of course, a hybrid approach can also be employed; for example, Anagram could be
deployed with no model, process 100% as false positives, and use feedback as an incre-
mental learning architecture. We performed some early experiments with feedback
learning using the PAYL sensor in [29], and Anagram has recently been used as a sensor
in [30]. We intend to continue integration experiments using Anagram, and will report
our results in a future paper.

5 Related Work

In addition to the works cited in the introduction, we further discuss research in anomaly
detection, signature generation, polymorphic worms, and mimicry and learning attacks.

5.1 Anomaly Detectors and Signature Generators

Early intrusion anomaly sensors focused system calls. Forrest [16]’s "foreign sequences
of system calls" in a binary-based anomaly detector is quite similar to the modeling
implemented in Anagram. Tan and Maxion [17] shows why Forrest's work produced
optimal results when the size of the token window was fixed at 6 (essentially a 6-gram).
In Anagram, no fixed sized window is needed; one may model a mixture of n-grams.
Forrest’s grams were sequences of tokens each representing a unique system function,
whereas Anagram models n-grams of byte values.

Many researchers have considered the use of packet flows and/or content analysis for
anomaly detection. Honeycomb [31] is a host-based IDS that automatically creates sig-
natures by applying longest common substring (LCS) on malicious traffic captured by a
honeypot targeting dark space. Computed substrings are used as candidate worm signa-
tures. Similarly, EarlyBird [32] uses Rabin fingerprints to find the most frequent sub-
strings for signatures. Unlike Honeycomb (and PAYL), Anagram computes distinct n-
grams from packets and compares the n-gram set against those in its model; this is a
linear-time operation, unlike polynomial-time LCS.

Polygraph [19] extends the work done in Autograph [33]; both are signature genera-
tors that assume traffic is separated into two flow pools, one with suspicious scanning
traffic and a one with non-suspicious traffic. Instead of assuming signatures are contigu-
ous, like Autograph, Polygraph allows a signature composed multiple noncontiguous
substrings (tokens), particularly to accommodate polymorphic worms. Tokens may be
generated as a set (of which all must be present), as an ordered sequence, or as a prob-
abilistic set (Bayes signature). Like Polygraph, Anagram is capable of identifying multi-
ple “tokens”. However, Anagram’s design also does not assume an external flow classi-
fier, being one itself. A more general discussion of related work in the area of anomaly
detection can be found in [10].

Shield [34] provides vulnerability signatures instead of string-oriented content signa-
tures, and blocks attacks that exploit that vulnerability. A “shield” is manually specified
for a vulnerability identified in some network available code; the time lag to specify, test
and deploy shields from the moment the vulnerability is identified favors the worm
writer, not the defenders. COVERS [35] analyzes attack-triggered memory errors in
C/C++ programs and develops structural memory signatures; this is a primarily host-
specific approach, while Anagram focuses on network traffic.

SigFree [9] uses a different approach, focusing on generic code detection; as its name
implies, it does not rely on signatures, preferring to disassemble instruction sequences
and identify, using data flow anomaly detection, if requests contain sufficient code to
merit them as being suspicious. Anagram does not explicitly differentiate between code
and data, although it is often able to do so based on training. Additionally, Anagram
monitors content flows, not just requests, and can apply to a broader variety of protocols.

5.2 Polymorphic Worms, Mimicry and Learning Attacks

Early work on polymorphic worms focused on making it more difficult for COTS signa-
ture scanner detection; they can be easily detected by an anomaly detector as they con-
tain significantly different byte distributions than non-malicious code. Polymorphic
worms with vulnerability-exploiting shellcode, e.g., ADMmutate [36] and CLET [24],

do support exploit vectors and are primarily designed to fool signature-based IDSes.
CLET does feature a form of padding, which they call cramming, to defeat simple
anomaly detectors. However, cram bytes are derived from a static source, i.e. instruc-
tions in a file included with the CLET distribution; while this may be customized to
approach a general mimicry attack, it must be done by hand.

The notion of a mimicry attack on an anomaly detection system was first introduced
in 2001 by Wagner and Dean [37], but initial efforts to generate mimicry attacks, includ-
ing [38] and [39], focused on system-call anomaly detection. With the advent of effec-
tive network payload-based anomaly detection techniques, researchers have begun build-
ing “smart worms” that employ a combination of polymorphism and mimicry attack
mechanisms. Kolesnikov, Dagon and Lee [1] built a worm specifically designed to target
network anomaly detection approaches, including PAYL. They use a number of tech-
niques, including polymorphic decryption, normal traffic profiling and blending, and
splitting to effectively defeat PAYL and several other IDSes.

Defeating learning attacks is also current research; [25] discusses the problem for
anomaly detectors from a theoretical perspective, categorizes different types of learning
attacks (e.g., causative vs. exploratory, etc.) and speculates as to several possible solu-
tions. Anagram implements some of these techniques, and its use of randomization,
hiding key parameters of the model secret from the attacker, may be extensible to learn-
ing. Our ongoing work includes exploring several other strategies, including the ran-
domization of n-gram sizes, and various strategies to test whether an attacker is polluting
learning traffic at given points in time.

6 Conclusion

Anagram is an anomaly detector based upon n-gram analysis using a binary-based mod-
eling technique. The use of randomization makes the sensor resistant to mimicry attack.
Anagram’s models use Bloom filters for compactness and performance. Our tests suggest
Anagram has less than a .01% false positive rate along with a 100% detection rate for a
variety of worms and viruses detected in traces of our local network traffic. Anagram’s
use of Bloom filters also enables effective privacy-preserving cross-site correlation and
signature generation.

Anagram detects existing mimicry attacks, including those targeted at our previous
anomaly detection sensor, PAYL, and we speculate that Anagram will be robust to future
attacks as well. We also discuss approaches to effectively learn Anagram models, includ-
ing the use of a bad content Bloom filter and instrumented shadow servers. For the latter
case, we believe Anagram can act as an effective network anomaly flow classifier to
mitigate host instrumentation overhead and make these tools effective for practical de-
ployment.

There are a number of interesting venues for future research. We intend to build an
integrated instrumented shadow server architecture utilizing Anagram to collect statistics
on performance and modeling accuracy. Another open area of research is to make bi-
nary-based modeling more robust against learning attacks. We would also like to com-
pare Anagram’s performance to other proposed content-based anomaly sensors.11 Fi-
nally, we intend a practical deployment of a multiple-site correlation effort and gauge
Anagram’s performance in helping to identify broad zero-day worms or targeted attacks
while maintaining full privacy.

11 At the time of writing this paper, no other sensors have been made available to us from other

researchers. We would be delighted to collaborate with other research groups to perform these
comparative evaluations.

Acknowledgements

We would like to thank Gabriela Cretu, Wei-Jen Li, Michael Locasto, Angelos Stavrou,
and Angelos Keromytis for their suggestions and advice during our collaboration, and
Panagiotis Manolios and Peter Dillinger for their suggestions in Bloom filter design.

References

1. Kolesnikov, O., D. Dagon, and W. Lee, Advanced Polymorphic Worms: Evading IDS by

Blending in with Normal Traffic, in USENIX Security Symposium. 2006: Vancouver, BC,

Canada.

2. Moore, D., et al. Internet Quarantine: Requirements for Containing Self-Propagating Code.

in INFOCOM. 2003.

3. Staniford-Chen, S., V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time.

in USENIX Security. 2002.

4. Christodorescu, M. and S. Jha. Static Analysis of Executables to Detect Malicious Patterns. in

USENIX Security Symposium. 2003. Washington, D.C.

5. Vargiya, R. and P. Chan. Boundary Detection in Tokenizing Network Application Payload for

Anomaly Detection. in ICDM Workshop on Data Mining for Computer Security (DMSEC).

2003. Melbourne, FL.

6. Kruegel, C., et al. Polymorphic Worm Detection Using Structural Information of Executables.

in Symposium on Recent Advances in Intrusion Detection. 2005. Seattle, WA.

7. Sekar, R., et al. Specification-based Anomaly Detection: A New Approach for Detecting

Network Intrusions. in ACM Conference on Computer and Communications Security. 2002.

Washington, D.C.

8. Kruegel, C., T. Toth, and E. Kirda. Service Specific Anomaly Detection for Network Intrusion

Detection. in Symposium on Applied Computing (SAC). 2002. Madrid, Spain.

9. Wang, X., et al. SigFree: A Signature-free Buffer Overflow Attack Blocker. in USENIX Secu-

rity. 2006. Boston, MA.

10. Wang, K. and S.J. Stolfo. Anomalous Payload-based Network Intrusion Detection. in Sympo-

sium on Recent Advances in Intrusion Detection. 2004. Sophia Antipolis, France.

11. Wang, K., G. Cretu, and S.J. Stolfo. Anomalous Payload-based Worm Detection and Signa-

ture Generation. in Symposium on Recent Advances in Intrusion Detection. 2005. Seattle, WA.

12. SourceFire Inc. Snort rulesets. 2006 [cited 2006 April 4]; Available from:

http://www.snort.org/pub-bin/downloads.cgi.

13. Locasto, M.E., S. Sidiroglou, and A.D. Keromytis. Application Communities: Using Mono-

culture for Dependability. in HotDep. 2005.

14. Locasto, M.E., S. Sidiroglou, and A.D. Keromytis. Software Self-Healing Using Collabora-

tive Application Communities. in Internet Society (ISOC) Symposium on Network and Dis-

tributed Systems Security. 2006. San Diego, CA.

15. Marceau, C. Characterizing the Behavior of a Program Using Multiple-Length N-grams. in

New Security Paradigms Workshop. 2000. Cork, Ireland.

16. Forrest, S., et al. A Sense of Self for Unix Processes. in IEEE Symposium on Security and

Privacy. 1996.

17. Tan, K.M.C. and R.A. Maxion. Why 6? Defining the Operational Limits of stide, an Anomaly-

Based Intrusion Detector. in IEEE Symposium on Security and Privacy. 2002. Berkeley, CA.

18. Crandall, J.R., et al. On Deriving Unknown Vulnerabilities from Zero-Day Polymorphic and

Metamorphic Worm Exploits. in ACM Conference on Computer and Communications Secu-

rity. 2005. Alexandria, VA.

19. Newsome, J., B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for

Polymorphic Worms. in IEEE Security and Privacy. 2005. Oakland, CA.

20. Singh, S., et al. Automated Worm Fingerprinting. in 6th Symposium on Operating Systems

Design and Implementation (OSDI '04). 2004. San Francisco, CA.

21. Bloom, B.H., Space/time trade-offs in Hash Coding with Allowable Errors. Communications

of the ACM, 1970. 13(7): p. 422-426.

22. Naor, M. and M. Yung. Universal One-Way Hash Functions and their Cryptographic Appli-

cations. in ACM Symposium on Theory of Computing. 1989. Seattle, WA.

23. Parekh, J.J., K. Wang, and S.J. Stolfo. Privacy-Preserving Payload-Based Correlation for

Accurate Malicious Traffic Detection. in Large-Scale Attack Detection, Workshop at

SIGCOMM. 2006. Pisa, Italy.

24. Detristan, T., et al. Polymorphic Shellcode Engine Using Spectrum Analysis. Phrack 2003

[cited 2006 March 28]; Available from: http://www.phrack.org/show.php?p=61&a=9.

25. Barreno, M., et al. Can Machine Learning Be Secure? in ASIACCS. 2006.

26. Cowan, C., et al. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-

Overflow Attacks. in USENIX Security Symposium. 1998. San Antonio, TX.

27. Sidiroglou, S., et al. Building a Reactive Immune System for Software Services. in USENIX.

2005. Anaheim, CA.

28. Sidiroglou, S., G. Giovanidis, and A.D. Keromytis. A Dynamic Mechanism for Recovering

from Buffer Overflow Attacks. in 8th Information Security Conference. 2005. Singapore.

29. Locasto, M.E., et al. FLIPS: Hybrid Adaptive Intrusion Prevention. in Symposium on Recent

Advances in Intrusion Detection. 2005. Seattle, WA.

30. Locasto, M.E., M. Burnside, and A.D. Keromytis, Bloodhound: Searching Out Malicious

Input in Network Flows for Automatic Repair Validation. 2006, Columbia University De-

partment of Computer Science: New York, NY.

31. Kreibich, C. and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signatures Using

Honeypots. in ACM Workshop on Hot Topics in Networks. 2003. Boston, MA.

32. Singh, S., et al. The EarlyBird System for Real-Time Detection of Unknown Worms. in ACM

Workshop on Hot Topics in Networks. 2003. Boston, MA.

33. Kim, H.-A. and B. Karp. Autograph: Toward Automated, Distributed Worm Signature Detec-

tion. in USENIX Security Symposium. 2004. San Diego, CA.

34. Wang, H.J., et al. Shield: Vulnerability-Driven Network Filters for Preventing Known Vul-

nerability Exploits. in ACM SIGCOMM. 2004.

35. Liang, Z. and R. Sekar. Fast and Automated Generation of Attack Signatures: A Basis for

Building Self-Protecing Servers. in ACM Conference on Computer and Communications Se-

curity. 2005. Alexandria, VA.

36. K2. ADMmutate. 2001 [cited 2006 March 29]; Available from:

http://www.ktwo.ca/security.html.

37. Wagner, D. and D. Dean. Intrusion Detection via Static Analysis. in IEEE Security and Pri-

vacy. 2001. Oakland, CA.

38. Wagner, D. and P. Soto. Mimicry Attacks on Host-Based Intrusion Detection Systems. in

ACM CCS. 2002.

39. Tan, K.M.C., K.S. Killourhy, and R.A. Maxion. Undermining an Anomaly-Based Intrusion

Detection System Using Common Exploits. in Symposium on Recent Advances in Intrusion

Detection. 2002. Zurich, Switzerland.

