
Intrusion and Anomaly Detection Model Exchange 

for Mobile Ad-Hoc Networks  
 

Gabriela F. Cretu, Janak J. Parekh, Ke Wang, Salvatore J. Stolfo  

Department of Computer Science  

Columbia University 

New York, US 

{gcretu, janak, kewang, sal}@cs.columbia.edu 

 

 
Abstract—Mobile Ad-hoc NETworks (MANETs) pose unique 

security requirements and challenges due to their reliance on 

open, peer-to-peer models that often don’t require authentication 

between nodes. Additionally, the limited processing power and 

battery life of the devices used in a MANET also prevent the 

adoption of heavy-duty cryptographic techniques. While 

traditional misuse-based Intrusion Detection Systems (IDSes) 

may work in a MANET, watching for packet dropouts or 

unknown outsiders is difficult as both occur frequently in both 

malicious and non-malicious traffic. Anomaly detection 

approaches hold out more promise, as they utilize learning 

techniques to adapt to the wireless environment and flag 

malicious data. The anomaly detection model can also create 

device behavior profiles, which peers can utilize to help 

determine its trustworthiness.  However, computing the anomaly 

model itself is a time-consuming and processor-heavy task. To 

avoid this, we propose the use of model exchange as a device 

moves between different networks as a means to minimize 

computation and traffic utilization. Any node should be able to 

obtain peers’ model(s) and evaluate it against its own model of 

“normal” behavior. We present this model, discuss scenarios in 

which it may be used, and provide preliminary results and a 

framework for future implementation. 
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I.  INTRODUCTION  

MANETs, or Mobile Ad-hoc NETworks, have recently 
gained adoption in a broad variety of environments thanks to 
improvements in wireless networking technology and the need 
for rapid mobile deployment. However, MANETs pose unique 
security requirements and challenges.  Since they enable 
devices to enter and leave a network without previous 
authentication or certification, a MANET node cannot be 
assumed to be trusted. Traditional security approaches, like 
firewalls, do not extend well to MANETs, where both benign 
and malicious parties have full access to communicate with 
peers.  Additionally, the limited processing power and battery 
life of these devices also prevent the adoption of heavy-duty 
cryptographic techniques. While traditional misuse-based 
IDSes may work in a MANET, the efficacy of these techniques 
is in question. A traditional IDS might watch for packet 
dropouts or unknown outsiders as a sign that an inbound 
communication may be malicious. In a MANET however, both 

of these occurrences are commonplace amongst benign nodes 
as well. Additionally, most MANET-based misuse detectors 
have focused on routing-specific attacks, e.g. [5], at the cost of 
ignoring actual application vulnerabilities. 

Anomaly detection approaches hold out more promise, as 
they utilize learning techniques to enable adaptation to the 
wireless environment and to the tasks and communications 
being utilized in that environment. Anomaly detectors generate 
a model of the observed data (traffic, behavior, etc), and 
compare new data against this model to check for anomalies. It 
is relatively simple to determine if peer communications fit that 
model, and to establish policies ignoring data that is flagged as 
malicious (e.g., [9, 10]). The model also acts as a profile of 
device behavior, which can be utilized by peers to help 
determine its trustworthiness by comparing their mutual 
models exchanged between the devices. 

This concept extends the notion of mutual authentication; 
rather than proving one’s trustworthiness via a certificate or a 
credential, here MANET nodes are authenticated by their 
behavior -- a profile of how they typically interact. Other nodes 
may validate the node by conformance to their own profiles, 
and to ensure the new node subsequently behaves in 
conformance with their announced profile. 

Early work in building anomaly detectors for MANETs was 
primarily focused on header-level and routing-level features [2, 
3, 4, 7]. Computing the anomaly model for traffic payload or 
other rich feature sets is a time-consuming and processor-heavy 
task, one that needs to be avoided in a battery-conscious, 
reduced-communication environment. To solve this, we 
propose the use of model exchange in a MANET to provide a 
balance between the need for adaptation as a device moves 
between different networks and the need to minimize 
computation and traffic utilization. Any node should be able to 
obtain peers’ model(s) and evaluate it against its own model of 
“normal” behavior. The node should be able to either integrate 
the peer’s model with its own to get a better idea of legitimate 
traffic being conducted on the network, or to flag the peer as 
suspicious if the profile is significantly different than its own. 

We present this model, discuss scenarios in which it may be 
used, provide early results about model integration and 
comparison, and provide a framework for future 
implementation. While worms and similar malicious payloads 



have not yet become prevalent on MANETs, it’s only a matter 
of time before such intrusion detection techniques are 
necessary [1]. 

II. MODEL DISTRIBUTION 

In a MANET, we make the fundamental assumption that 
most nodes cannot (or prefer not to) compute an anomaly 
model for payloads, due to the lack of traffic, battery power, or 
computation ability. This requires the existence of a node that 
is sufficiently powerful to perform anomaly model learning and 
can bootstrap the MANET’s model set. Depending on the 
location of this node, several different distribution models can 
be adopted: 

• Use a server/desktop entity to generate the anomaly 
model.  This is ideal for situations where the MANET is 
running a replica or a lightweight version of the desktop 
application (e.g., SMTP messaging or HTTP data transfer).  In 
these cases, training can be done on the desktop and the model 
distributed to the MANET nodes when possible: (a) If the 
MANET nodes have WAN connectivity, they can initiate 
download requests to obtain the latest model from the server.  
(Some WAN topologies now allow for “push” models, which 
could be leveraged to let the desktop administer the download 
interval.)  A hierarchical distribution can also be accomplished, 
whereby a single MANET node downloads the data over a 
potentially expensive WAN link and then utilizes the WLAN 
links to distribute the updated model to neighboring nodes.  (b) 
Without WAN connectivity, MANET nodes can be initialized 
before deployment. This is a natural arrangement for 
“syncable” handheld devices (e.g., Palm/WinCE PDAs), which 
often have a cradle at the office/base and allow one-touch 
synchronization.  We call this mechanism pre-charging. 
Ideally, the handheld device would contact the desktop at a 
regular basis, but high-quality models can reduce this 
dependency. Synchronization can also be accomplished with 
intermittent network links. 

• If a desktop cannot be deployed, a more powerful 
MANET node can be deployed, with sufficient processing 
and/or battery power to perform anomaly training. This 
“supernode” would listen promiscuously to all visible traffic on 
the MANET, generate models, and distribute them to the 
(potentially weaker) peers. This model is decentralized and 
does not require WAN connectivity. However, the supernode 
does not see traffic that is not routed within its vicinity. A 
workaround to enable broader model coverage would entail 
periodic traffic reports from all nodes; these traffic samples 
should be sufficient to construct a representative model. 

• Use a precomputed anomaly model.  This scenario is 
worst-case, but can be practical in situations where the 
MANET’s behavior is well-defined and follows a standard 
protocol definition. This is a variation on the first scenario, but 
one where the regular synchronization requirement is dropped. 

• Introduce node(s) from a different MANET who has 
been able to compute an anomaly model.  Much like the 
previous scenario, this works best when MANET functionality 
is well-defined and compatible with the other MANET. 

Degraded modes can also be adopted, i.e., in scenarios 
where anomaly models are unavailable, mobile nodes can 
adopt a “defensive” posture and reject otherwise accepted 
traffic.  While model exchange imposes an additional 
restriction as opposed to standalone misuse or anomaly 
detectors, we believe that the savings in computation time and 
the benefits justify these requirements. 

III. MODEL AGGREGATION/PROFILING  

Once models are exchanged, they must be processed with 
relation to the node’s own model.  We propose two different 
mechanisms for doing this, depending on the similarity of the 
models exchanged.  (A more precise definition of model 
similarity is implementation-specific; one is discussed in 
section IV of this paper.) 

For models that are similar, the likelihood is that there are 
multiple MANET nodes accomplishing similar tasks and 
whose behavior closely matches the first node.  In these cases, 
we are interested in aggregating the models to produce one 
unified view of the current MANET and to reduce false 
suspicions of anomalous behavior. This model of aggregation 
also enables the incremental, decentralized evolution of the 
MANET as the nature of the tasks and the distribution of nodes 
changes – in essence, it is a low-cost metalearning algorithm. 
The idea of aggregation was previously used in MANETs for 
alerts; [6] demonstrated that, by integrating security-related 
information at the protocol level from a wider area, false 
positive rate and detection rate can be improved. We believe 
that model aggregation will have a similar effect on the false 
positive rate and will give a better characterization of the 
environment. Appropriate aggregation algorithms must be 
careful to avoid the equivalent of a learning attack, e.g., an 
attacker that gradually poisons models until the anomaly 
classifier accepts malicious traffic as legitimate.  We believe 
the short nature of MANET communications naturally avoids 
this; future work will evaluate our architecture’s vulnerability 
to this attack technique.  

In addition to model aggregation, models have a second 
use: they act as a behavioral profile of nodes. This enables 
peers to determine whether or not to communicate with a 
particular node. If the peers’ models are very similar to the 
node in question, it suggests that the node is performing similar 
tasks, and is benign. A node with a dissimilar model is likely 
sending out substantially different and potentially malicious 
content. For example, a node sending out worm packets will 
generate a substantially different content distribution than a 
benign node; see section IV for further discussion. A 
determination can be made via a simple comparison, which 
yields a similarity metric. (In fact, similar profiles may then be 
aggregated as discussed.) Nodes can then use a predefined 
policy to threshold the metric and decide whether or not to 
cooperate with the node in question. 

IV. CASE STUDY: PAYL MODELS 

To verify our hypothesis, we examine the use of model 
exchange with the Anomalous Payload-based Network 
Intrusion Detector (PAYL), developed in the Intrusion 
Detection Systems Lab at Columbia University. PAYL has 



 

 

favorable characteristics for MANET model exchange; in 
particular, it uses small-size models that can be easily 
exchanged, profiled and aggregated between nodes. In this 
section, we will introduce the PAYL sensor and show the 
methods that can be used to accomplish the above mentioned 
tasks. We will also show early experimental results that 
validate these methods. 

A. PAYL: content based anomaly detector 

We provide here a brief introduction to the technology 

behind the PAYL sensor, while in-depth studies can be found 

in [9, 10]. This anomaly detector relies on the fact that network 

traffic differs significantly depending on the target port and 

length of the payload observed. During the training phase, 

incoming packets on a given port are frequency analyzed, and 

the distributions are clustered together based on the payloads. 

This clustering process results in a number of centroids that 

characterize the traffic for the chosen port and packet length. 

By considering all the centroids obtained for different port and 

length, we obtain a PAYL model. Incoming packets are 

compared against this model in the detection phase to check for 

anomalies. It is also possible to check bidirectional traffic in 

the same manner and to detect worms by performing 

ingress/egress correlation. 

Of particular interest in the MANET case is that PAYL 

models are small in size (~50K after compression) and can 

therefore be exchanged between the nodes of a low-bandwidth 

network. 

B. PAYL model aggregation 

As mentioned before, PAYL models are composed of 
centroids that capture payload byte distribution. With PAYL’s 
incremental learning technique [9], merging models is as 
simple as averaging one model onto the other. If, for a specific 
payload length, only one of the models contains one or more 
computed centroids, the aggregate one will simply inherit these 
centroids. 

This aggregation algorithm requires linear execution time 
(relative to the size of the model), thus satisfying the 
computational limitations typical to MANETs. Also, since 
PAYL models only contain statistical distributions, they can be 
distributed without encryption, as sensitive content will not be 
revealed. 

C. PAYL model profiling 

The profiling technique for PAYL models provides 
multiple levels of detail for performing analysis. We explore 
only some of the methods here, leaving room for more 
investigation in the future. At the first level, we extract the 
payload length distribution for the two models that we 
compare, and compute the Manhattan distance [9] between 
them. If this distance is greater than a significant threshold, we 
might conclude that the models display a significant difference. 
If not, we perform the analysis at a higher level of detail and 
compare based on the distance between each model’s centroids 
for any port and packet length. This can be done either by 

considering only the predominant centroid for each packet 
length, or all centroids contained in the model. 

The advantage of performing a multi-level analysis is that 
negative answers for divergent models can be returned very 
quickly, while in-depth comparisons will be performed only for 
very similar models. As a result, this method can satisfy low 
computational constraints. 

D. Experimental results  

In order to confirm the characteristics of the PAYL model 
profiling and aggregation, we have conducted a series of 
experiments on a set of four models, which we name model1 
through model4.  

- model1 and model2 were generated on machines 
accepting similar traffic (as both machines service the same 
population). 

- model3 was generated on a machine that sees a more 
complex traffic, including more media data. 

- model4 was built out of mostly abnormal traffic populated 
with Code Red II, an IIS WebDAV exploit, etc.  

As an example, figure 1 displays two centroids built for the 
same payload length and the same port in model1 and in 
model4. 

Figure 1.  First centroid for port 80, length 1058 for model4 (top) and model1 

(bottom) 

The profiling method discussed in IV.C was used to 
perform comparisons between these models. It correctly 
decided that model1 and model2 are similar, while model3 and 
model4 present significant differences relative to other models. 
Numerical results reported by this method at various level of 
detail can be found in Table I, Table II and Table III.  

TABLE I.  MANHATTAN DISTANCES BETWEEN VARIOUS PAYLOAD 

LENGTH DISTRIBUTIONS 

Manhattan distance between length distributions 

model1 

model2 

model1 

model3 

model1 

model4 

model3 

model4 

0.4210 1.5201 1.8981 0.7898 

 



TABLE II.  AVERAGE OF MANHATTAN DISTANCES COMPUTED BETWEEN 

THE FIRST CENTROIDS OF EACH POSSIBLE LENGTH IN EACH MODEL 

Average Manhattan distances between first centroids 

model1 

model2 

model1 

model3 

model1 

model4 

model3 

model4 

0.5946 0.7400 1.6368 1.6330 

TABLE III.  AVERAGE OF MANHATTAN DISTANCES COMPUTED BETWEEN 

ALL CENTROIDS CORRESPONDENT TO EACH POSSIBLE LENGTH OF EACH MODEL 

Average Manhattan distances between all centroids 

model1 

model2 

model1 

model3 

model1 

model4 

model3 

model4 

0.4276 0.6112 1.5220 1.5096 

 

These tables show two different metrics for comparison 
(payload length distributions and payload content 
distributions). We observe that model1 is quite similar to 
model2 with respect to their average payload length 
distributions and content distributions. model4 clearly appears 
different than the other models for both length and content 
distributions. However, while model1 and model3 are similar 
with respect to their content distributions, there is a significant 
discrepancy between their length distributions. This fact leads 
us to the conclusion that we need to explore more ways of 
calculating similarity between the models. Our ongoing 
research is focused on correlating these and other metrics for 
better performance. 

After profiling the neighbor models, a MANET node could 
be ready to aggregate its own model with ones that are similar 
to it. 

We tested the aggregation method to prove that we do not 
lose important information from the individual models. We 
tested both the simple (unaggregated) models and the 
aggregated models against the same data. Based on Table 4, we 
can observe that even if the number of alerts is different for 
each simple model, the aggregated models do not significantly 
shorten the spectrum of alerts that each simple model can 
generate. The aggregated model shows similar behavior to the 
ones used to create it, which implies that the aggregation 
method is reliable. 

TABLE IV.  TESTING PAYL USING MODEL1 AND MODEL2, AND THEIR 
AGGREGATE 

No. of packets used 

for each test 

No. of alerts generated using different 

models 

total # packets /  

 # content packets 

model1  

 

model2 

 

model1+2 

 

127023 / 10414 149 184 149 

304182 / 21812 2705 2829 2672 

276332 / 26294 9684 11128 9669 

353897 36780 11201 3394 2187 

 

In Table V, we observe that there is a significant difference 
between the number of alerts generated by model1 and model3, 
leading us to conclude that the two are not similar models. We 
plan to capture more data for similarity measurements in future 
experiments. 

TABLE V.  TESTING PAYL USING MODEL1 AND MODEL2, AND THEIR 
AGGREGATE 

No. of packets used 

for each test 

No. of alerts generated using different 

models 

total # packets /  

 # content packets 

model1  

 

model2 

 

model1+2 

 

127023 / 10414 149 81 148 

304182 / 21812 2705 1789 2613 

276332 / 26294 9684 1138 9530 

353897 / 36780 11201 2919 11040 

 

V. CONCLUSIONS  

We proposed the use of anomaly detection model exchange 
in a MANET environment, and its limitations and dynamics. 
We also introduced an initial feasibility study of model 
exchange by using the PAYL anomaly detector. 

As discussed previously, there is further research to be 
conducted, including further development of algorithms for 
aggregation and comparison (including metalearning), design 
and implementation of an automated model exchange 
infrastructure, and possibly the use of other anomaly detection 
models, such as those computed by the PAD algorithm [11]. 
We also did not completely address the possibility of mimicry 
attacks against the aggregation and profiling techniques 
discussed in this paper. There are several strategies to avoiding 
mimicry attacks against anomaly detectors [8]; we will evaluate 
their applicability in later work. Finally, we also intend to 
explore the effect of Byzantine behavior on model aggregation. 
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