
Anomaly Detection in Computer Security and
an Application to File System Accesses�

Salvatore J. Stolfo, Shlomo Hershkop, Linh H. Bui, Ryan Ferster, and Ke Wang

Columbia University, New York, NY 10027, USA
{sal, shlomo, lhb2001, rlf92, kewang}@cs.columbia.edu

Abstract. We present an overview of anomaly detection used in com-
puter security, and provide a detailed example of a host-based Intrusion
Detection System that monitors file systems to detect abnormal accesses.
The File Wrapper Anomaly Detector (FWRAP) has two parts, a sensor
that audits file systems, and an unsupervised machine learning system
that computes normal models of those accesses. FWRAP employs the
Probabilistic Anomaly Detection (PAD) algorithm previously reported
in our work on Windows Registry Anomaly Detection. FWRAP rep-
resents a general approach to anomaly detection. The detector is first
trained by operating the host computer for some amount of time and
a model specific to the target machine is automatically computed by
PAD. The model is then deployed to a real-time detector. In this paper
we describe the feature set used to model file system accesses, and the
performance results of a set of experiments using the sensor while attack-
ing a Linux host with a variety of malware exploits. The PAD detector
achieved impressive detection rates in some cases over 95% and about a
2% false positive rate when alarming on anomalous processes.

Keywords: Host-Based Intrusion Detection, Anomaly Detection, File
System, Wrapping

1 Introduction

Widely used commercial Intrusion Detection Systems (IDS) are based on sig-
nature matching algorithms. These algorithms match audit data of network or
host activity to a database of signatures which correspond to known attacks.
This approach, like virus detection algorithms, requires previous knowledge of
an attack and is not effective on new attacks.

Anomaly Detection is an important alternative detection methodology that
has the advantage of defending against new threats not detectable by signature-
based systems. In general, anomaly detectors build a description of normal
activity, by training a model of a system under typical operation, and compare

� This work has been supported in part by a contract from DARPA, Application-layer
IDS, Contract No. F30602-00-1-0603.

M.-S. Hacid et al. (Eds.): ISMIS 2005, LNAI 3488, pp. 14–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Anomaly Detection in Computer Security 15

the normal model at run time to detect deviations of interest. Anomaly Detectors
may be used over any audit source to both train and test for deviations from the
norm. Anomaly detection algorithms may be specification-based or data mining
or machine learning-based [11, 12], and have been applied to network intrusion
detection [9, 11] and also to the analysis of system calls for host based intrusion
detection [4, 6, 10, 23].

Specification or behavior based anomaly detectors such as the STAT approach
[19], represent normal execution of a system using programmer supplied state
transition or finite state machine representations [14]. Anomalies are detected at
run-time when the execution of a process or system violates the predefined nor-
mal execution model. Data mining or machine learning-based anomaly detectors
automatically learn a normal model without human intervention.

Anomaly detection systems are more art than science. A number of design
choices are necessary to build an effective detector. First, one must design a
monitor or auditing sensor that is able to extract data from some system or
component, and do so without wasting resources and minimizing the impact on
the system being monitored.

One must also design a set of informative “features” that are extracted from
the audit data that provides the means of computing an effective model able
to distinguish attacks from normal execution. Subsequently, one must under-
stand what “attacks” may be buried in that audit data, i.e. whether sufficient
information is manifest in the data to identify an attack from normal data. In
approaches based upon machine learning, the design process is further compli-
cated by “noise”. Too frequently in research on anomaly detection, authors state
the requirement that the training data must be purely normal and attack-free.
This is unrealistic in most cases of computer security auditing where systems are
under constant attack and monitoring generates vast quantities of data including
attacks. Hand-cleaning data to exclude noise, or attack information, or to label
data accurately, is simply not possible. Hence, anomaly detection algorithms
must be sensitive to noise and produce models that are robust.

Some approaches to host-based anomaly detection have focused on monitor-
ing the operating system’s (OS) processes during program execution and alerting
on anomalous sequences of system calls. For example, OS wrappers monitor each
system call or DLL application and test a set of rules for ”consistent” program
execution [2]. This presumes that a program’s legitimate system call execution
can be specified correctly by a set of predefined rules. Alternatively, some have
implemented machine learning techniques that model sequences of normal execu-
tion traces and thus detect run time anomalies that exhibit abnormal execution
traces [6].

There are several important advantages to auditing at the OS level. This
approach may provide broad coverage and generality; for a given target platform
it may have wide applicability to detect a variety of malicious applications that
may run on that platform.

However, there are several disadvantages to anomaly detection at the OS
monitoring level. Performance (tracing and analyzing system calls) is not cheap;



16 S.J. Stolfo et al.

there is a substantial overhead for running these systems, even if architected
to be as lightweight as possible. Second, the adaptability and extensibility of
these systems complicates their use as updates or patches to a platform may
necessitate a complete retraining of the OS trace models.

Furthermore, OS system call tracing and anomaly detection may have another
serious deficiency; they may suffer from mimicry attack [20], since the target
platform is widely available for study by attackers to generate exploits that
appear normal when executed.

We have taken an alternative view of host-based anomaly detection. Anoma-
lous process executions (possibly those that are malicious) may be detected by
monitoring the trace of events as they appear on attempts to alter or damage
the machine’s permanent store. Thus, a malicious attack that alters only run-
time memory would not necessarily be detected by this monitor, while the vast
majority of malicious attacks which do result in changes to the permanent store
of the host might leave a trace of anomalous file system events. In this case, the
two very important host based systems to defend and protect are the Registry
(in Window’s case) and the file system (in both Window’s and Unix cases). The
file system is the core permanent store of the host and any malicious execution
intended to damage a host will ultimately set its sights upon the file system. A
typical user or application will not behave in the same manner as a malicious
exploit, and hence the behavior of a malicious exploit is likely able to be detected
as an unusual or unlikely set of file system accesses.

The File Wrapper Anomaly Detection System (FWRAP) is presented in this
paper as an exemplary application of anomaly detection to computer security
applications. FWRAP is a host-based detector that utilizes file wrapper technol-
ogy to monitor file system accesses. The file wrappers implemented in FWRAP
are based upon work described in [25] and operate in much the same fashion
as the wrapper technology described in [2]. The wrappers are implemented to
extract a set of information about each file access including, for example, date
and time of access, host, UID, PID, and filename, etc. Each such file access thus
generates a record describing that access.

Our initial focus here is to regard the set of file system access records as a
database, and to model the likely records in this database. Hence, any record an-
alyzed during detection time is tested to determine whether it is consistent with
the database of training records. This modeling is performed by the Probabilistic
Anomaly Detection algorithm (PAD) introduced in our prior work on the Win-
dows registry [1]. We report on experiments using alternative threshold logic
that governs whether the detector generates an alarm or not depending upon
the scores computed by PAD. The PAD detector achieved impressive detection
rates in some cases over 95% and about a 2% false positive rate when alarming
on anomalous processes.

The rest of the paper is organized as follows. Section 2 briefly describes
alternative anomaly detection algorithms and a brief description of the PAD
algorithm. Section 3 discusses the architecture of the FWRAP sensor. Section 4
describes the audit data and features computed that are input to PAD to gener-



Anomaly Detection in Computer Security 17

ate models of normal file accesses. We then detail results of various experiments
running real malware against a Linux host. Section 5 describes the experimental
setup and the results and findings. Section 5 describes the open problems in
anomaly detection research and how this work can be extended.

2 Alternative Anomaly Detection Algorithms

Anomaly detection systems for computer security, and host-based intrusion de-
tection specifically, were first proposed by Denning [3]. The concept was later
implemented in NIDES [9] to model normal network behavior in order to de-
tect deviant network traffic that may correspond to an attack against a network
computer system.

A variety of other work has appeared in the literature detailing alternative
algorithms to establish normal profiles, applied to a variety of different audit
sources, some specific to user commands for masquerade detection [16, 13, 21],
others specific to network protocols and LAN traffic for detecting denial of service
attacks [12, 18] or Trojan execution, or application or system call-level data for
malware detection [6], to name a few.

A variety of different modeling approaches have been described in the litera-
ture to compute baseline profiles. These include probabilistic models or statistical
outlier detection over (temporal) data [4, 24]; comparison of statistical distribu-
tions (or histogram distance metrics) [22], one-class supervised machine learning
[13, 21] and unsupervised cluster-based algorithms [5, 15]. Some approaches con-
sider the correlation of multiple models [7, 23]. One-class Support Vector Ma-
chines have also been applied to anomaly detection in computer security [8]. W.
Lee et al. [11] describe a framework and system for auditing and data mining
and feature selection for intrusion detection. This framework consists of classi-
fication, link analysis and sequence analysis for constructing intrusion detection
models.

In general, in the case that an audit source is a stream or temporally ordered
data, a variety of models may be defined for an audit source and a detector may
be computed to generate an alarm if a violation is observed based upon volume
and velocity statistics. Volume statistics represent the amount of data observed
per unit of time, while velocity statistics model the changes in frequency of the
data over time. In practice, a number of simple algorithms work surprisingly
well. For example, computing “moving averages” over time to estimate the av-
erage state of a system, and detecting “bursts” by, for example, noting when
the volume or velocity of events exceeds one or two standard deviations from
the mean works effectively in detecting distributed denial of service attacks, or
scanning/probing activities.

One of the most cruical design choices in designing an anomaly detector is
the choice of algorithm, the feature sets and the training methodology. Funda-
mentally, the issue is whether the resultant models can effectively detect truly
abnormal events that correspond to an attack. A fuller treatment evaluating
anomaly detection algorithms and their coverage is given by Maxion [17].



18 S.J. Stolfo et al.

The performance of the various anomaly detectors also varies with a num-
ber of tunable parameters including the amount and quality of training data
(amount of noise present), the threshold settings and the particular decision
logic used, and whether the detectors output is validated by correlating with
other information. For example, probabilistic based algorithms typically score
data by estimating the likelihood of that data. Cluster-based or SVM-based al-
gorithms employ a distance metric or a density measure to estimate whether a
datum is normal, or a member of a minority cluster. In either case, a threshold
needs to be set to determine whether a data under test is or is not normal.
The calibration of this tunable threshold greatly affects the performance of any
anomaly detection system, either generating too few true positives, or too many
false positives.

Furthermore, computer systems are highly dynamic and rarely reach a sta-
ble state. Any normal model computed for one period of time will undoubtedly
go stale at some future time. Thus, anomaly detectors require updating and
adaption to shifting environments. Detecting when retraining is necessary, or
the time “epoch” when a detector ought to be retrained is very much a matter
of the specific environment being modeled. In many cases, these issues, calibra-
tion, environment shift, and adaptive re-training, are core design requirements
necessitating a lot of study, design and engineering for successful systems to be
deployed. Bad choices will lead to faulty systems that are either blind to real
attacks, or generate so many false alarms as to provide no useful information.

In our prior work, we proposed and developed a number of anomaly detec-
tion algorithms. Several cluster-based algorithms were explored [15, 5] as well as
probabilistic modeling for sequence data [4], and for database records [1]. The
PAD algorithm inspects feature values in its training data set, and estimates the
probability of occurrence of each value using a Bayesian estimation technique.
PAD estimates a full conditional probability mass function and thus estimates
the relative probability of a feature value conditioned on other feature values
and the expected frequency of occurrence of each feature. One of the strengths
of the PAD algorithm is that it also models the likelihood of seeing new feature
values at run-time that it may not have encountered during training. We assume
that normal events will occur quite frequently, and abnormal events will occur
with some very low probability. Our experiments and application of PAD have
been shown to be robust and effective models are trainable in any environment
where “noise” is a minority of the training data.

In the following sections we provide an exemplar anomaly detector. We
present the FWRAP anomaly detector that audits host-based file systems during
a training period, and detects abnormal file accesses at detection time using the
PAD algorithm. Anomalous processes are noted by FWRAP when a sufficient
number of anomalous file accesses are detected by PAD. We test the effective-
ness of the detector by running real exploits against a Windows machine and
meausure the detector accuracy over varying threshold settings. We begin with
a description of the FWRAP architecture.



Anomaly Detection in Computer Security 19

3 FWRAP System Architecture

Several requirements drove the design of the FWRAP system. The file system
sensor had to be lightweight, easily portable to different systems, and complete,
in the sense that it is able to monitor all file system accesses without loss of
information. Perhaps the most important requirement is that the system must
be transparent to the user.

Previous work by Zadok [25] proposed a mountable file system for Unix and
Windows which would allow additional extensions to the underlying operating
system without having to modify kernel level functionality. The FiST technology
developed in that work has been extended to provide a security mechanism via
file system auditing modules via a Vnode interface. We implemented a FiST au-
dit module that forms the basis of the FWRAP audit sensor. Figure 1 illustrates
the architecture that we developed as a standalone real time application on a
single Linux host.

Records

Sensor
FIST

WRAPFS

Underlying FS

PAD Detector

Data Warehouse

RecordsAlerts

K
E

R
N

E
L

U
SE

R
VNODE LAYER

User Process

VOP_READ()Alerts

UFS_READ()

DISK_DEV_READ()

Local Disk

read()

wrapsfs_read()

Fig. 1. The Architecture of FWRAP IDS

Once all subsystem file accesses are logged its a straightforward matter to
provide the means of reading from the log, formatting the data and sending it
to the PAD module for analysis. A typical snippet of a line of text sent to the
PAD module is as follows.

Mar 9 19:03:14 zeno kernel:
snoopfs detected access by uid 0, pid 1010, to file cat

This record was generated when the root user accesses a file named ’cat’ on
a machine named ’zeno’. We modified a C program to format this data for PAD
exemplified by the following (partial) record.

<rec><Month str>Mar</Month> <Day i>9</Day> <Time str>19:03:14</Time>
<IP str>zeno</IP> <UID i>0</UID> <PID i>1010</PID> <File str>cat</File></rec>



20 S.J. Stolfo et al.

3.1 PAD Detector

The data gathered by monitoring each file access is a rich set of information
that describes in great detail a single file access. Each record is treated as a
feature vector used by PAD for training a normal model that describes normal
file accesses.

PAD models each feature and pairs of features as a conditional probability. A
single feature produces a “first order consistency check” that scores the likelihood
of observing a feature value at run time. PAD also models the likelihood of
observing a new feature value at run-time that was not observed during training.
Second order consistency checks score the likelihood of a particular feature value
conditioned on a second feature. Thus, given n features in a training record,
PAD generates n first order consistency checks, and n ∗ (n − 1) second order
consistency checks. Although it is possible to use higher order consistency checks,
the computational overhead and space constraints make it infeasible for the
current implementation of PAD.

The feature vector available by auditing file accesses has 18 fields of informa-
tion, some of which may not have any value in describing or predicting a normal
file access. For example, one such feature may be the process identifier, PID, as-
sociated with the file access. PID’s are arbitrarily assigned by the underlying OS
and in and of themselves have no intrinsic value as a predictor of a file access. As
an expediency such fields may be dropped from the model. Only 7 features are
used in the experiments reported in this paper as detailed in the next section.

After training a model of normal file accesses using the PAD algorithm the
resultant model is then used at runtime to detect abnormal file accesses. Alerts
are generated via threshold logic on the PAD computed scores. As shown in
Figure 1 the detector runs on the user level as a background process. Having it
run on the user level can also provide additional protection of the system as the
sensor can be hard-coded to detect when it is the subject of a process that aims
to kill its execution, or to read or write its files. (Self-protection mechanisms for
FWRAP are beyond the scope of this paper.)

3.2 FWRAP Features

The FWRAP data model consists of 7 features extracted or derived from the
audit data provided by the FWRAP sensor.

Several of the features describe intrinsic values of the file access, for example,
the name of the file, and the user id. We also encode information about the
characteristics of the file involved in the access, specifically the frequency of
touching the file. This information is discretized into a few categories rather
than represented as a continuous valued feature. We generally follow a strategy
suggested by the Windows OS. Within the add/change applications function of
control panel in Windows, the frequency of use of an application is characterized
as ”frequently”, ”sometimes” and ”rarely”. Since it is our aim to port FWRAP to
Windows (exploiting whatever native information Windows may provide and to
correlate FWRAP with RAD), we decided in this experimental implementation
of FWRAP on Linux to follow the same principle for the Unix file system but



Anomaly Detection in Computer Security 21

with a slightly finer level of granularity than suggested by Windows. Hence, we
measured file accesses over a trace for several days, and discretized the frequency
of use of a file into the four categories as described below.

The entire set of features used by in this study to model file system accesses
are as follows:

UID. This is the user ID running the process
WD. The working directory of a user running the process
CMD. This is the command line invoking the running process
DIR. This is the parent directory of the touched file.
FILE. This is the name of the file being accessed. This allows our algorithm to

locate files that are often or not often accessed in the training data. Many
files are accessed only once for special situations like system or application
installation. Some of these files can be changed during an exploit.

PRE-FILE. This is the concatenation of the three previous accessed files. This
feature codes information about the sequence of accessed files of normal
activities such as log in, Netscape, statx, etc. For example, a login process
typically follows a sequence of accessed files such as .inputrc, .tcshrc, .history,
.login, .cshdirs, etc.

FREQUENCY. This feature encodes the access frequency of files in the train-
ing records. This value is estimated from the training data and discretized
into four categories:
1. NEVER (for processes that don’t touch any file)
2. FEW (where a file had been accessed only once or twice)
3. SOME (where a file had been accessed about 3 to 10 times)
4. OFTEN (more than SOME).

Alternative discretization of course are possible. We computed the standard
deviations from the average frequency of access files from all user processes
in the training records to define the category ranges. An access frequency
falls into the range of FEW or OFTEN categories often occurs for a file
touched by the kernel or a background process.

Examples of typical records gathered from the sensors with these 7 features
are:
500 /home/linhbui login /bin dc2xx10
725-705-cmdline Some 1205,Normal

500 /home/linhbui kmod /Linux_Attack kmod
1025-0.3544951178-0.8895221054 Never 1253,Malicious

The last items (eg., “1253,Malicious) are tab separated from the feature val-
ues and represent an optional comment, here used to encode ground truth used
in evaluating performance of the detector. The first record with pid=1205 was
generated from a normal user activity. The second was captured from an attack
running the kmod program to gain root access. The distinction is represented
by the labels ”normal” and ”malicious”. These labels are not used by the PAD
algorithm. They exist solely for testing and evaluating the performance of the
computed models.



22 S.J. Stolfo et al.

Another malicious record is
0 /home/linhbui sh /bin su meminfo-debug-insmod Some
1254,Malicious

This record illustrates the results of an intruder who gained root access. The
working directory (WD) is still at /home/linhbui but the UID now has changed
to 0. A record of this nature ought to be a low probability event.

4 Experiments

We deployed the FWRAP audit sensor on a “target host” machine in our lab
environment, an Intel Celeron 800MHz PC with 256 RAM, running Linux 2.4
with an ext2 file-system. The data gathered by the sensor was logged and used
for experimental evaluation on a separate machine. The latter test machine is
far faster and provided the means of running multiple experiments to measure
accuracy and performance of the PAD implementation. The target host was part
of a Test Network Environment which allowed us to run controlled executions
of malicious programs without worrying about noise from outside the network
corrupting our tests, nor inadvertently allowing leakage of an attack to other sys-
tems. Data was not gathered from a simulator, but rather from runtime behavior
of a set of users on the target machine.

We collected data from the target host for training over 5 days of normal usage
from a group of 5 users. Each user used the machine for their work, logging in,
editing some files on terminal, checking email, browsing some website, etc. The
root user performed some system maintenance as well as routine sysadmin tasks.

The logged data resulted in a data set of 275,666 records of 23 megabytes
which we used to build a PAD model on the other “test machine”. This model
will be referred to as the “clean model”, although we note that PAD can toler-
ate noise. The size of the model was 486 megabytes prior to any pruning and
compression.

Once the model was computed, one of the users on the target machine volun-
teered to be the “Attacker”, who then used the target machine for 3 experiments
each lasting from 1 to 3 hours. The malicious user ran three different exploits
and three Trojan exploits from their home account. These exploits are publicly
available on the Internet. The user was asked to act maliciously and to gain root
privileges using the attack exploits on hand. Once root control was acquired, the
user further misused the host by executing programs which placed back-doors
in the system. The system was monitored while the attacks were run. The re-
sultant monitoring produced records from the FWRAP sensors. These records
were then tested and scored by the PAD model.

The PAD analysis was run on the test machine, a dual processor 1500 MHz
with 2GB of ram. The total time to build the model of the 23 MB of training data
was three minutes, with memory usage at 14%. Once, the model was created,
we ran the model against the test data from the 3 experiments, while varying
the thresholds to generate a ROC curve. Each detection process took 15 seconds
with 40% of CPU usage and 14% of memory.



Anomaly Detection in Computer Security 23

These performance statistics were measured on the test machine, not on
the target host where the data was gathered. This experimental version was
implemented to test the efficacy of the approach and has not been optimized for
high efficiency and minimal resource consumption for deployment on the target
machine. Even so, the analysis of the computational performance of the sensor
measured during the experiments indicates that although training the model is
resource intensive, run-time detection is far less expensive. A far more efficient
professionally engineered version of FWRAP would reduce resource consumption
considerably. That effort would make sense only if the sensor achieves the goal
of detecting anomalous events indicative of a security breach.

It should be noted that the RAD sensor/detector using PAD running on
Windows has been upgraded to run exceptionally fast, with a very small amount
of memory and CPU footprint. (The current Windows implementation of PAD
requires less than 1 MB of space and the run-time detector consumes at most
5% of CPU, barely discernible.) This newer implementation of PAD is being
ported to Linux so that FWRAP will also be far more efficient than the present
prototype reported in this paper. The version reported here is the first proof of
concept implementation without the performance enhancements implemented
on the Windows platform.

5 Results

This section describes the results of a subset of experiments we ran. Space does
not permit a full treatment and comparative evaluation of alternative alert de-
cision logic.

The PAD algorithm evaluates each file access record output by the sensor by
comparing the PAD scores to a threshold value. Each record produces 49 scores
for each consistency check (7 first order + 7x6 second order). The minimum score
over all consistency checks is then tested against the threshold. If the minimum
score is below the threshold, an alert is generated for that record.

An example of the PAD output with threshold = 0.1 is as follows: 8.873115
8.39732 7.69225 4.057663 0.485905 0.323076 6.527675 8.34453 7.464175 3.727299 0.0
0.0 5.971592 8.344 7.464175 3.727299 0.0 0.0 5.79384 7.45713 7.454335 4.060443 0.0
0.0 4.97851 3.732753 3.723643 4.039242 0.0 0.0 3.982627 0.458721 0.371057 0.439515
0.14842 0.0 0.221132 0.302689 0.20546 0.258604 0.090151 0.0 0.067373 5.978326 5.81323
5.015466 4.060443 0.0 0.0 :
1254,Malicious (Min score 0.0)

A process is identified as malicious if more than some minimum number of
records it generates is scored as an anomaly. This number is a second threshold.
We tested varying threshold levels applied to the PAD scores under different
thresholds governing the number of anomalous records used to generate a final
alert.

The decision process is evaluated by varying the percentage of anomalous
records that are generated by a process in order to raise an alert. For example,
a process might be considered malicious if it generates one anomalous record, or



24 S.J. Stolfo et al.

all of its records are anomalous, or some percentage of its records are deemed
anomalous. We vary this percentage in the following experiments from 10% to
80%.

We define “Detection Rate” as the percentage of all process labeled “mali-
cious” that produced PAD scores below the threshold. The “False Positive Rate”
is the percentage labeled “normal” that likewise produced records with PAD
scores that were below the threshold. We illustrate the different detection rates
and false positive rates over different threshold settings in tabular form. The
results indicate that the per-process detection logic provides excellent detection
rate and lower false positive rates. This leads to the observation that a malicious
process typically generates a considerable number of anomalous events, while
many normal processes occasionally generate a few anomalous events. This is
not surprising as the same results were discovered in the RAD experiments [1].

Table 1, Table 2, and Table 3 detail the results on a Per Process basis. The
best results are 95% detection with about 2% false positive rates in experiment
1, 97% accuracy with 7% false positives in experiment 2 and 100% with 8% false
positive in experiment 3. Note that the results from experiment 1 are relatively
better with respect to false positive rates than those from experiments 2 and
3. The primary reason concerns that amount of training performed during the
different experiments. Experiment 1 had far more training data establishing
the perhaps obvious point that as the sensor models more events its detection
accuracy increases.

In the first experiment implemented on the target machine, there were 5,550
processes generated during the 3 hour period. 121 processes were generated dur-
ing the attack period (i.e. the time between the initial launching of the attacking
exploits and the Trojan software execution after he gained root access). However,
only 22 processes generated during this time were spawned by the attack.

Many of the false positives were from processes that were simply not run as
a part of the training session but were otherwise normal file system programs.

Table 1. Experiment 1, per-process detection. Number of processes: 5550, number of
malicious processes: 22

Threshold Detection False
Rate Positive

1.1 1.0 0.027090
1.0 0.954545 0.02727
0.9 0.909091 0.026690
0.8 0.909091 0.026345
0.7 0.863636 0.025927
0.6 0.863636 0.025381
0.5 0.772727 0.023363
0.4 0.772727 0.021145
0.3 0.727273 0.020981
0.2 0.727273 0.020909
0.1 0.727273 0.020163



Anomaly Detection in Computer Security 25

Table 2. Experiment 2, per-process detection. Number of processes: 1344, number of
malicious processes: 37

Threshold Detection False
Rate Positive

1.3 1.0 0.072485
1.2 0.972973 0.071741
1.1 0.972973 0.071145
1.0 0.972973 0.070104
0.9 0.972973 0.068616
0.8 0.972973 0.0675
0.7 0.972973 0.066532
0.6 0.945946 0.062961
0.5 0.945946 0.057553
0.4 0.945946 0.057328
0.3 0.918919 0.057276
0.2 0.918919 0.057180
0.1 0.918919 0.046897

Table 3. Experiment 3, per-process detection. Number of processes: 1279, number of
malicious processes: 72

Threshold Detection False
Rate Positive

0.8 1.0 0.08889
1.7 0.98611 0.08850
0.6 0.97222 0.08647
0.5 0.86111 0.07732
0.4 0.80555 0.07544
0.3 0.79166 0.07498
0.2 0.79166 0.07357
0.1 0.77777 0.07107

False positives also occurred when processes were run under varying condi-
tions. Command shell execution and file execution of a new application caused
false positives to appear. Applications generate processes in different ways de-
pending upon their underlying system call initiation. Furthermore, programs
which require a network connection to run correctly caused a false alarm when
executed without a network connection. These false alarms arise because the
model has not seen behavior from all the different execution behaviors of a given
program.

6 Conclusions

By using file system access on a Linux system, we are able to label all processes
as either attacks or normal, with high accuracy and low false positive rates. We



26 S.J. Stolfo et al.

observe that file system accesses are apparently quite regular and well modeled
by PAD. Anomalous accesses are rather easy to detect. Furthermore, malicious
process behavior generates a relatively significant number of anomalous events,
while normal processes can indeed generate anomalous accesses as well.

The work reported in this paper is an extension of our research on anomaly
detection. The PAD algorithm has been previously applied to network traffic,
as well as the Windows Registry, as described earlier in this paper. There are
a number of open research issues that we are actively pursuing. These issues
involve calibration, pruning, feature selection, concept (or environment) drift,
correlation and resiliency to attack.

Briefly, we seek automatic means of building anomaly detectors for arbi-
trary audit sources that are well behaved, and are easy to use. With respect
to calibration, one would ideally like a system such as FWRAP to self-adjust
its thresholding to minimize false positives while revealing sufficient evidence
of a true anomaly indicative of an abuse or an attack. It is important to un-
derstand, however, that anomaly detection models should be considered part
of the evidence, and not be depended upon for the whole detection task. This
means anomaly detector outputs should be correlated with other indicators or
other anomaly detection models computed over different audit sources, different
features or different modeling algorithms, in order to confirm or deny that an
attack is truly occurring. Thus, it would be a mistake to entirely focus on a well
calibrated threshold for a single anomaly detector simply to reduce false posi-
tives. It may in fact be a better strategy to generate more alerts, and possibly
higher numbers of false positives, so that the correlation of these alerts with
other confirmatory evidence reveals the true attacks that otherwise would go
undetected (had the anomaly detector threshold been set too low).

In the experiments run to date PAD produces fine grained models that are ex-
pensive in memory. There are several enhancements that have been implemented
in the Windows implementation of PAD for the RAD detector to alleviate its
memory consumption requirements. These include pruning of features after an
analytical evaluation that would indicate no possible consistency check violation
would be possible for a feature at run-time.

Finally, two questions come to most minds when they first study anomaly
detectors of various kinds; how long should they be trained, and when should
they be retrained. These issues are consistently revealed due to a common phe-
nomenon, concept (or environment) drift. What is modeled at one point in time
represents the “normal data” drawn from the environment for a particular train-
ing epoch, but the environment may change (either slowly or rapidly) which
necessitates a change in model.

The particular features being drawn from the environment have an intrinsic
range of values; PAD is learning this range, and modeling the inherent “variabil-
ity” of the particular feature values one may see for some period of time. Some
features would not be expected to vary widely over time, others may be expected
to vary widely. PAD learns this information (or an approximation) for the period
of time it observes the data. But it is not known if it has observed enough. RAD’s



Anomaly Detection in Computer Security 27

implementation on Windows provides the means of automatically retraining a
model under a variety of user controlled schedules or performance measures.
RAD includes a decision procedure, and a feedback control loop that provides
the means to determine whether PAD has trained enough, and deems when it
may be necessary to retrain a model if its performance should degrade. The same
techniques are easily implemented for FWRAP as well.

References

1. F. Apap, A. Honig, S. Hershkop, E. Eskin and S. Stolfo. Detecting Malicious
Software by Monitoring Anomalous Windows Registry Accesses. Fifth Interna-
tional Symposium on Recent Advances in Intrusion Detection, RAID-2002. Zurich,
Switzerland, 2002.

2. R. Balzer. Mediating Connectors. 19th IEEE International Conference on Dis-
tributed Computing Systems Workshop, 1994.

3. D. E. Denning, An intrusion detection model. IEEE Transactions on Software
Engineering, 222, SE-13, 1987

4. E. Eskin. Anomaly Detection Over Noisy Data Using Learned Probability Distri-
butions. In Proceedings of the 17th Intl Conf. on Machine Learning (ICML-2000),
2000.

5. E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. J. Stolfo. A Geometric Frame-
work for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled
Data. Data Mining for Security Applications. Kluwer 2002.

6. S. Forrest and S. A. Hofmeyr and A. Somayaji and T. A. Longstaff. A Sense of
Self for UNIX Processes IEEE Symposium on Security and Privacy, 120-128, 1996

7. A. K. Ghosh, A. Schwartzbard, M. Schatz. Learning Program Behavior Profiles for
Intrusion Detection. Workshop Intrusion Detection and Network Monitoring 1999.

8. K. A Heller, K. M Svore, A. D. Keromytis, and S. J. Stolfo. One Class Sup-
port Vector Machines for Detecting Anomalous Window Registry Accesses. 3rd
IEEE Conference Data Mining Workshop on Data Mining for Computer Security.
November 19, 2003.

9. H. S. Javitz and A. Valdes. The NIDES Statistical Component: Description and
Justification. Technical report. SRI International, 1993.

10. W. Lee and S. J. Stolfo and P. K. Chan. Learning patterns from UNIX processes
execution traces for intrusion detection AAAI Workshop on AI Approaches to
Fraud Detection and Risk Management, 50-56, 1997

11. W. Lee and S. Stolfo. 1999. A Framework for Constructing Features and Mod-
els for Intrusion Detection Systems. In Proceedings of 1999 IEEE Symposium on
Computer Security and Privacy and the Proceedings of the 8th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining. 1999.

12. M. V. Mahoney AND P. K. Chan. Detecting Novel Attacks by Identifying anoma-
lous Network Packet Headers. Florida Institute of Technology Technical Report
CS-2001-2, 1999.

13. R. Maxion, and T. Townsend. Masquerade Detection Using Truncated Command
Lines. International Conference on Dependable Systems and Networks (DSN-02),
Washington, D.C., 2002.

14. C. C. Michael and A. Ghosh. Simple, State-based approaches to Program-based
Anomaly Detection. ACM Trans. on Information and System Security, TISSEC.
Vol. 5., 2002.



28 S.J. Stolfo et al.

15. L. Portnoy, E. Eskin and S. J. Stolfo. Intrusion detection with unlabeled data
using clustering’. Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001). Philadelphia, PA, 2001.

16. M. Schonlau, W. DuMouchel, W. Ju, A. F. Karr, M. Theus, and Y. Vardi. Com-
puter intrusion: Detecting masquerades. Statistical Science, 16(1):58-74, February
2001.

17. K M.C. Tan and Roy A. Maxion. Why 6? Defining the Operational Limits of stide,
an Anomaly-Based Intrusion Detector. IEEE Symp. On Security and Privacy. 2002.

18. C. Taylor and J. Alves-Foss. NATE: Network Analysis of Anomalous Traffic Events,
a low-cost approach. In Proceedings New Security Paradigms Workshop, 2001.

19. G. Vigna, F. Valeur and R. Kemmerer. Designing and Implementing a Family of
Intrusion Detection Systems. Proc. 9th European software engineering conference,
2003.

20. D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems.
Ninth ACM Conference on Computer and Communications Security, 2002.

21. K. Wang and S. Stolfo. One-Class Training for Masquerade Detection. 3rd IEEE
International Conference on Data Mining, Workshop on Data Mining for Security
Applications, Florida, Nov., 2003.

22. K. Wang, S. J. Stolfo. Anomalous Payload-based Network Intrusion Detection.
RAID2004, France, September 2004.

23. C. Warrender, S. Forrest, and B. Pearluter. Detecting Intrusions Using System
Calls: Alternative Data Models. IEEE Computer Society, 1999.

24. N. Ye. A Markov Chain Model of Temporal Behavior for Anomaly Detection. In
Proceedings of the 2000 IEEE Workshop on Information Assurance and Security,
United States Military Academy, West Point, NY. 2000.

25. E. Zadok and Jason Nieh. FiST: A Language for Stackable File Systems. Usenix
Technical Conference. June 2000


	Introduction
	Alternative Anomaly Detection Algorithms
	FWRAP System Architecture
	PAD Detector
	FWRAP Features

	Experiments
	Results
	Conclusions

